Microcanonical ensemble: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
Line 1: Line 1:
Microcanonical Ensemble (Clasical statistics):
== Ensemble variables ==  
== Ensemble variables ==  
(One component system, 3-dimensional system, ... ):
(One component system, 3-dimensional system, ... ):
Line 12: Line 10:
== Partition function ==  
== Partition function ==  


<math> Q_{NVE} = \frac{1}{h^{3N} N!} \int \int d  (p)^{3N} d(q)^{3N} \delta ( H(p,q) - E).
:<math> Q_{NVE} = \frac{1}{h^{3N} N!} \int \int d  (p)^{3N} d(q)^{3N} \delta ( H(p,q) - E).
</math>
</math>


Line 25: Line 23:
* <math> H \left(p,q\right) </math> represent the Hamiltonian, i.e. the total energy of the system as a function of coordinates and momenta.
* <math> H \left(p,q\right) </math> represent the Hamiltonian, i.e. the total energy of the system as a function of coordinates and momenta.


*<math> \delta \left( x \right) </math> is the [[Dirac delta distribution|Dirac delta function]]
*<math> \delta \left( x \right) </math> is the [[Dirac delta distribution]]


== Thermodynamics ==
== Thermodynamics ==


: <math> \left. S = k_B \log Q_{NVE} \right. </math>
:<math> \left. S = k_B \log Q_{NVE} \right. </math>


where:
where:
Line 39: Line 37:
== References ==
== References ==
# D. Frenkel and B. Smit, "Understanding Molecular Simulation: From Algorithms to Applications", Academic Press
# D. Frenkel and B. Smit, "Understanding Molecular Simulation: From Algorithms to Applications", Academic Press
[[Category:Statistical mechanics]]

Revision as of 12:50, 27 February 2007

Ensemble variables

(One component system, 3-dimensional system, ... ):

  • : Number of Particles
  • : Volume
  • : Internal energy (kinetic + potential)

Partition function

where:

  • represents the 3N Cartesian position coordinates.
  • represents the 3N momenta.
  • represent the Hamiltonian, i.e. the total energy of the system as a function of coordinates and momenta.

Thermodynamics

where:

  • is the entropy

References

  1. D. Frenkel and B. Smit, "Understanding Molecular Simulation: From Algorithms to Applications", Academic Press