Mean spherical approximation: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (New page: The '''Lebowitz and Percus''' mean spherical approximation (MSA) (1966) \cite{PR_1966_144_000251} closure is given by <math>c(r) = -\beta \omega(r), ~~~~ r>\sigma.</math> The {\bf Blum a...)
 
mNo edit summary
Line 1: Line 1:
The '''Lebowitz and Percus''' mean spherical approximation (MSA) (1966)
The '''Lebowitz and Percus''' mean spherical approximation (MSA) (1966) (Ref. 1) closure is given by
\cite{PR_1966_144_000251}
closure is given by


<math>c(r) = -\beta \omega(r), ~~~~ r>\sigma.</math>
:<math>c(r) = -\beta \omega(r), ~~~~ r>\sigma.</math>


The {\bf Blum and H$\o$ye} mean spherical approximation (MSA) (1978-1980)
The {\bf Blum and H$\o$ye} mean spherical approximation (MSA) (1978-1980)
Line 9: Line 7:
closure is given by
closure is given by


<math>{\rm g}_{ij}(r) \equiv h_{ij}(r) +1=0 ~~~~~~~~ r < \sigma_{ij} = (\sigma_i + \sigma_j)/2</math>
:<math>{\rm g}_{ij}(r) \equiv h_{ij}(r) +1=0 ~~~~~~~~ r < \sigma_{ij} = (\sigma_i + \sigma_j)/2</math>


and
and


<math>c_{ij}(r)= \sum_{n=1} \frac{K_{ij}^{(n)}}{r}e^{-z_nr} ~~~~~~ \sigma_{ij} < r</math>
:<math>c_{ij}(r)= \sum_{n=1} \frac{K_{ij}^{(n)}}{r}e^{-z_nr} ~~~~~~ \sigma_{ij} < r</math>


where $h_{ij}(r)$ and $c_{ij}(r)$ are the total and the direct correlation functions for two spherical
where $h_{ij}(r)$ and $c_{ij}(r)$ are the total and the direct correlation functions for two spherical
Line 19: Line 17:
Duh and Haymet (Eq. 9 \cite{JCP_1995_103_02625}) write the MSA approximation as
Duh and Haymet (Eq. 9 \cite{JCP_1995_103_02625}) write the MSA approximation as


<math>g(r) = \frac{c(r) + \beta \Phi_2(r)}{1-e^{\beta \Phi_1(r)}}</math>
:<math>g(r) = \frac{c(r) + \beta \Phi_2(r)}{1-e^{\beta \Phi_1(r)}}</math>


where $\Phi_1$ and $\Phi_2$ comes from the WCA division of the LJ potential.\\
where $\Phi_1$ and $\Phi_2$ comes from the WCA division of the LJ potential.\\
By introducing the definition  (Eq. 10 \cite{JCP_1995_103_02625})  
By introducing the definition  (Eq. 10 \cite{JCP_1995_103_02625})  


<math>s(r) = h(r) -c(r) -\beta \Phi_2 (r)</math>
:<math>s(r) = h(r) -c(r) -\beta \Phi_2 (r)</math>


one can arrive at  (Eq. 11 \cite{JCP_1995_103_02625})
one can arrive at  (Eq. 11 \cite{JCP_1995_103_02625})


<math>B(r) \approx B^{\rm MSA}(s) = \ln (1+s)-s</math>
:<math>B(r) \approx B^{\rm MSA}(s) = \ln (1+s)-s</math>


The [[Percus Yevick]] approximation may be recovered from the above equation by setting <math>\Phi_2=0</math>.
The [[Percus Yevick]] approximation may be recovered from the above equation by setting <math>\Phi_2=0</math>.


==References==
==References==
#[PR_1966_144_000251]

Revision as of 14:08, 23 February 2007

The Lebowitz and Percus mean spherical approximation (MSA) (1966) (Ref. 1) closure is given by

The {\bf Blum and H$\o$ye} mean spherical approximation (MSA) (1978-1980) \cite{JSP_1978_19_0317_nolotengoSpringer,JSP_1980_22_0661_nolotengoSpringer} closure is given by

and

where $h_{ij}(r)$ and $c_{ij}(r)$ are the total and the direct correlation functions for two spherical molecules of $i$ and $j$ species, $\sigma_i$ is the diameter of $i$ species of molecule.\\ Duh and Haymet (Eq. 9 \cite{JCP_1995_103_02625}) write the MSA approximation as

where $\Phi_1$ and $\Phi_2$ comes from the WCA division of the LJ potential.\\ By introducing the definition (Eq. 10 \cite{JCP_1995_103_02625})

one can arrive at (Eq. 11 \cite{JCP_1995_103_02625})

The Percus Yevick approximation may be recovered from the above equation by setting .

References

  1. [PR_1966_144_000251]