Master equation: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Started adding the master equation)
m (Added equations of evolution)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{stub-general}}
{{stub-general}}
The '''master equation''' describes the exact behavior of the velocity distribution for any time (Ref. 1 Eq. 3-11)
The '''master equation''' describes the exact behavior of the [[velocity distribution]] for any time (Ref. 1 Eq. 3-11)


:<math>\partial_{t \rho_0} \left( \{ {\mathbf \upsilon} \},t \right) =  {\mathcal D}_0 \left(t, \rho_{ \{k'' \} } \left( \{ {\mathbf \upsilon} \},0 \right)  \right) + \int_0^t G_{00}(t-t') \rho_0 \left( \{ {\upsilon} \},t' \right)  {\mathrm d}t'</math>
:<math>\partial_{t \rho_0} \left( \{ {\mathbf \upsilon} \},t \right) =  {\mathcal D}_0 \left(t, \rho_{ \{k'' \} } \left( \{ {\mathbf \upsilon} \},0 \right)  \right) + \int_0^t G_{00}(t-t') \rho_0 \left( \{ {\upsilon} \},t' \right)  {\mathrm d}t'</math>


where
where the time dependent functional of the initial conditions is given by (Ref. 1 Eq. 3-9)


:<math>{\mathcal D}_0 \left(t, \rho_{ \{k'' \} } \left( \{ {\mathbf \upsilon} \},0 \right)  \right)</math>
:<math>{\mathcal D}_0 \left(t, \rho_{ \{k'' \} } \left( \{ {\mathbf \upsilon} \},0 \right)  \right) = \frac{-1}{2\pi} \oint_c \exp (-izt) \sum_{ \{k'' \} \neq 0} {\mathcal D}^+_{0 \{k'' \}} (z) \rho_{\{k'' \}} \left( \{ {\mathbf \upsilon} \},0 \right) </math>
 
and the diagonal fragment is given by (Ref. 1 Eq. 3-10)
 
:<math>G_{00}(\tau)  = \frac{1}{2\pi i} \oint_c \exp (-iz \tau) \psi^+_{00} (z)~ {\mathrm d}z </math>
 
==Equations of evolution==
The equations of evolution for the distribution function <math>\rho</math> for the diagonal fragments(Ref. 1 Eq. 3-1)
 
:<math>\psi_{ \{k\}\{k\}}(z) = \sum_{n=2}^\infty (-\lambda)^n \langle \{k\}  \vert \delta L \left[ \frac{1}{L_0-z} \delta L \right]^n  \vert \{k\} \rangle </math>
 
for the creation fragments (Ref. 1 Eq. 3-2)
 
:<math>\tilde{C}_{ \{k\}\{k'\}}(z) = \sum_{n=1}^\infty (-\lambda)^n \langle \{k\}  \vert  \left[ \frac{1}{L_0-z} \delta L \right]^n  \vert \{k'\} \rangle </math>
 
and for the destruction regions (Ref. 1 Eq. 3-3)
 
:<math>\mathcal{D}_{ \{k'\}\{k''\}}(z) = \sum_{n=1}^\infty (-\lambda)^n \langle \{k'\}  \vert  \left[ \delta L \frac{1}{L_0-z}  \right]^n  \vert \{k''\} \rangle </math>
==References==
==References==
#[http://dx.doi.org/10.1016/0031-8914(61)90008-8 I. Prigonine and P. Résibois "On the kinetics of the approach to equilibrium", Physica '''27''' pp. 629-646  (1961)]
#[http://dx.doi.org/10.1016/0031-8914(61)90008-8 I. Prigogine and P. Résibois "On the kinetics of the approach to equilibrium", Physica '''27''' pp. 629-646  (1961)]
[[category: Non-equilibrium thermodynamics]]
[[category: Non-equilibrium thermodynamics]]

Latest revision as of 12:07, 1 July 2008

This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.

The master equation describes the exact behavior of the velocity distribution for any time (Ref. 1 Eq. 3-11)

where the time dependent functional of the initial conditions is given by (Ref. 1 Eq. 3-9)

and the diagonal fragment is given by (Ref. 1 Eq. 3-10)

Equations of evolution[edit]

The equations of evolution for the distribution function for the diagonal fragments(Ref. 1 Eq. 3-1)

for the creation fragments (Ref. 1 Eq. 3-2)

and for the destruction regions (Ref. 1 Eq. 3-3)

References[edit]

  1. I. Prigogine and P. Résibois "On the kinetics of the approach to equilibrium", Physica 27 pp. 629-646 (1961)