Lennard-Jones equation of state: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎Johnson, Zollweg and Gubbins: Mentioned all authors)
m (Added a recent publication)
Line 28: Line 28:
Boltachev and Baidakov have paid particular attention to including data from the metastable region <ref>[http://dx.doi.org/10.1023/A:1023394122000 G. Sh. Boltachev and V. G. Baidakov "Equation of State for Lennard-Jones Fluid", High Temperature '''41''' pp. 270-272 (2003)]</ref>.
Boltachev and Baidakov have paid particular attention to including data from the metastable region <ref>[http://dx.doi.org/10.1023/A:1023394122000 G. Sh. Boltachev and V. G. Baidakov "Equation of State for Lennard-Jones Fluid", High Temperature '''41''' pp. 270-272 (2003)]</ref>.
==Melting line==
==Melting line==
The solid and liquid densities along the melting line are given by the following equations
The solid and liquid densities along the [[Melting curve |melting line]] are given by the following equations
====van der Hoef====
====van der Hoef====
van der Hoef (Ref. <ref>[http://dx.doi.org/10.1063/1.1314342 Martin A. van der Hoef "Free energy of the Lennard-Jones solid", Journal of Chemical Physics '''113''' pp. 8142-8148 (2000)]</ref> Eqs. 25 and 26):
van der Hoef (Ref. <ref>[http://dx.doi.org/10.1063/1.1314342 Martin A. van der Hoef "Free energy of the Lennard-Jones solid", Journal of Chemical Physics '''113''' pp. 8142-8148 (2000)]</ref> Eqs. 25 and 26):
Line 54: Line 54:
*[http://dx.doi.org/10.1021/ie0495628 Hertanto Adidharma and Maciej Radosz "The LJ-Solid Equation of State Extended to Thermal Properties, Chain Molecules, and Mixtures", Industrial and Engineering Chemistry Research '''43''' pp. 6890 - 6897 (2004)]
*[http://dx.doi.org/10.1021/ie0495628 Hertanto Adidharma and Maciej Radosz "The LJ-Solid Equation of State Extended to Thermal Properties, Chain Molecules, and Mixtures", Industrial and Engineering Chemistry Research '''43''' pp. 6890 - 6897 (2004)]
*[http://dx.doi.org/10.1063/1.1823371    David M. Eike, Joan F. Brennecke, and Edward J. Maginn "Toward a robust and general molecular simulation method for computing solid-liquid coexistence", Journal of Chemical Physics '''122''' 014115 (2005)]
*[http://dx.doi.org/10.1063/1.1823371    David M. Eike, Joan F. Brennecke, and Edward J. Maginn "Toward a robust and general molecular simulation method for computing solid-liquid coexistence", Journal of Chemical Physics '''122''' 014115 (2005)]
*[http://dx.doi.org/10.1063/1.3561698 Sergey A. Khrapak and Gregor E. Morfill "Accurate freezing and melting equations for the Lennard-Jones system", Journal of Chemical Physics '''134''' 094108 (2011)]


{{Numeric}}
{{Numeric}}
[[category: equations of state]]
[[category: equations of state]]

Revision as of 15:07, 24 June 2011

The equation of state of the Lennard-Jones model.

Johnson, Zollweg and Gubbins

Johnson, Zollweg and Gubbins [1] proposed an equation of state based on 33 parameters within a modified Benedict, Webb and Rubin equation of state, which accurately reproduces the vapour-liquid equilibrium curve.

Kolafa and Nezbeda

The Kolafa and Nezbeda equation of state [2] provides us with the Helmholtz energy function: (Eq. 30):

the compressibility factor (Eq. 31)

and the internal energy (Eq. 32)

On the following page is the FORTRAN code for the Kolafa and Nezbeda equation of state.

Ree

The Ree equation of state [3] is an extension of the earlier work of Hansen [4] in the high temperature region.

Boltachev and Baidakov

Boltachev and Baidakov have paid particular attention to including data from the metastable region [5].

Melting line

The solid and liquid densities along the melting line are given by the following equations

van der Hoef

van der Hoef (Ref. [6] Eqs. 25 and 26):

and

Mastny and de Pablo

Mastny and de Pablo (Ref [7] Eqs. 20 and 21):

and

References

Related reading


This page contains numerical values and/or equations. If you intend to use ANY of the numbers or equations found in SklogWiki in any way, you MUST take them from the original published article or book, and cite the relevant source accordingly.