Heaviside step distribution: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 26: Line 26:
:<math>\frac{{\rm d}}{{\rm d}x} H_{\epsilon}(x-a)= \frac{1}{\epsilon}\left( H(x - (a-\frac{\epsilon}{2})) - H (x - (a+\frac{\epsilon}{2}))\right)</math>  
:<math>\frac{{\rm d}}{{\rm d}x} H_{\epsilon}(x-a)= \frac{1}{\epsilon}\left( H(x - (a-\frac{\epsilon}{2})) - H (x - (a+\frac{\epsilon}{2}))\right)</math>  


in the limit this is the [[Dirac delta function]]. Thus  
in the limit this is the [[Dirac delta distribution]]. Thus  
 
:<math>\frac{{\rm d}}{{\rm d}x} [H(x)]= \delta(x)</math>
 
The delta function has the fundamental property that
 
:<math>\int_{-\infty}^{\infty} f(x) \delta(x-a) {\rm d}x = f(a)</math>
 


:<math>\frac{{\rm d}}{{\rm d}x} [H(x)]= \delta(x)</math>.
==References==
==References==
#[http://store.doverpublications.com/0486612724.html  Milton Abramowitz and  Irene A. Stegun "Handbook of Mathematical Functions" Dover Publications ninth printing.]  
#[http://store.doverpublications.com/0486612724.html  Milton Abramowitz and  Irene A. Stegun "Handbook of Mathematical Functions" Dover Publications ninth printing.]  
[[category:mathematics]]
[[category:mathematics]]

Revision as of 11:34, 29 May 2007

The Heaviside step distribution is defined by (Abramowitz and Stegun Eq. 29.1.3, p. 1020):

Differentiating the Heaviside distribution

At first glance things are hopeless:

however, lets define a less brutal jump in the form of a linear slope such that

in the limit this becomes the Heaviside function . However, lets differentiate first:

in the limit this is the Dirac delta distribution. Thus

.

References

  1. Milton Abramowitz and Irene A. Stegun "Handbook of Mathematical Functions" Dover Publications ninth printing.