Heaviside step distribution: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 9: Line 9:
\end{array} \right.
\end{array} \right.
</math>
</math>
==Differentiating the Heaviside  distribution==
At first glance things are hopeless:
:<math>\frac{{\rm d}H(x)}{{\rm d}x}= 0, ~x \neq 0</math>
:<math>\frac{{\rm d}H(x)}{{\rm d}x}= \infty, ~x = 0</math>
however, lets define a less brutal jump in the form of a linear slope
such that
:<math>H_{\epsilon}(x-a)= \frac{1}{\epsilon}\left( R(x - (a-\frac{\epsilon}{2})) - R (x - (a+\frac{\epsilon}{2}))\right)</math>
in the limit <math>\epsilon \rightarrow 0</math> this becomes the Heaviside function
<math>H(x-a)</math>. However, lets differentiate first:
:<math>\frac{{\rm d}}{{\rm d}x} H_{\epsilon}(x-a)= \frac{1}{\epsilon}\left( H(x - (a-\frac{\epsilon}{2})) - H (x - (a+\frac{\epsilon}{2}))\right)</math>
in the limit this is the [[Dirac delta function]]. Thus
:<math>\frac{{\rm d}}{{\rm d}x} [H(x)]= \delta(x)</math>
The delta function has the fundamental property that
:<math>\int_{-\infty}^{\infty} f(x) \delta(x-a) {\rm d}x = f(a)</math>
==References==
==References==
#[http://store.doverpublications.com/0486612724.html  Milton Abramowitz and  Irene A. Stegun "Handbook of Mathematical Functions" Dover Publications ninth printing.]  
#[http://store.doverpublications.com/0486612724.html  Milton Abramowitz and  Irene A. Stegun "Handbook of Mathematical Functions" Dover Publications ninth printing.]  
[[category:mathematics]]
[[category:mathematics]]

Revision as of 11:32, 29 May 2007

The Heaviside step distribution is defined by (Abramowitz and Stegun Eq. 29.1.3, p. 1020):

Differentiating the Heaviside distribution

At first glance things are hopeless:

however, lets define a less brutal jump in the form of a linear slope such that

in the limit this becomes the Heaviside function . However, lets differentiate first:

in the limit this is the Dirac delta function. Thus

The delta function has the fundamental property that


References

  1. Milton Abramowitz and Irene A. Stegun "Handbook of Mathematical Functions" Dover Publications ninth printing.