Hard superball model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Added some internal links)
No edit summary
Line 6: Line 6:
:<math>\left|\frac{x}{a}\right|^{2q} + \left|\frac{y}{a}\right|^{2q} +\left|\frac{z}{a}\right|^{2q}  \le 1</math>  
:<math>\left|\frac{x}{a}\right|^{2q} + \left|\frac{y}{a}\right|^{2q} +\left|\frac{z}{a}\right|^{2q}  \le 1</math>  


where ''x'', ''y'' and ''z'' are scaled Cartesian coordinates with ''q'' the deformation parameter and radius ''a''. The shape of the superball interpolates smoothly between two Platonic solids, namely the octahedron (''q'' = 0.5) and the [[Hard cube model |cube]] (''q'' = ∞) via the [[Hard sphere model |sphere]] (''q'' = 1) as shown in the left figure.
where ''x'', ''y'' and ''z'' are scaled Cartesian coordinates with ''q'' the deformation parameter and radius ''a''. The shape of the superball interpolates smoothly between two Platonic solids, namely the octahedron (''q'' = 0.5) and the [[Hard cube model |cube]] (''q'' = ∞) via the [[Hard sphere model |sphere]] (''q'' = 1) as shown in the right figure.


== Particle Volume  ==  
== Particle Volume  ==  

Revision as of 08:31, 2 October 2012

The shape of superballs interpolates between octahedra (q = 0.5) and cubes (q = ∞) via spheres (q = 1).
Phase diagram for hard superballs in the (packing fraction) versus 1/q (bottom axis) and q (top axis) representation where q is the deformation parameter [2].

The hard superball model is defined by the inequality

where x, y and z are scaled Cartesian coordinates with q the deformation parameter and radius a. The shape of the superball interpolates smoothly between two Platonic solids, namely the octahedron (q = 0.5) and the cube (q = ∞) via the sphere (q = 1) as shown in the right figure.

Particle Volume

The volume of a superball with the shape parameter q and radius a is given by

Failed to parse (unknown function "\begin{eqnarray}"): {\displaystyle \begin{eqnarray} v(q,a) & = & 8 a^3 \int_{0}^1 \int_{0}^{(1-x^{2q})^{1/2q}} (1-x^{2q}-y^{2q})^{1/2q} \mathrm{d}\, y \, \mathrm{d}\, x \nonumber\\ & = & \frac{8a^3\left[ \Gamma\left(1+1/2q\right) \right]^3}{\Gamma\left(1+ 3/2q\right)}, \end{eqnarray} }

where is the Gamma function.

Overlap algorithm

The most widely used overlap algorithm is on the basis of Perram and Wertheim method [1] [2].

Phase diagram

The full phase diagram of hard superballs whose shape interpolates from cubes to octahedra was reported in Ref [2].

References