Gibbs-Duhem integration

From SklogWiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The so-called Gibbs-Duhem integration refers to a number of methods that couple molecular simulation techniques with thermodynamic equations in order to draw phase coexistence lines. The original method was proposed by David Kofke [1] [2].

Basic Features

Consider two thermodynamic phases: and , at thermodynamic equilibrium at certain conditions. Thermodynamic equilibrium implies:

  • Equal temperature in both phases: , i.e. thermal equilibrium.
  • Equal pressure in both phases , i.e. mechanical equilibrium.
  • Equal chemical potentials for the components , i.e. material equilibrium.

In addition, if one is dealing with a statistical mechanical model, having certain parameters that can be represented as , then the model should be the same in both phases.

Example: phase equilibria of one-component system

Notice: The derivation that follows is just a particular route to perform the integration

  • Consider that at given conditions of two phases of the systems are at equilibrium, this implies:

Given the thermal equilibrium we can also write:

where

  • , where is the Boltzmann constant

When a differential change of the conditions is performed one will have, for any phase:

Taking into account that is the Gibbs energy function per particle

where:

  • is the internal energy (sometimes written as ).
  • is the volume
  • is the number of particles

are the mean values of the energy and volume for a system of particles in the isothermal-isobaric ensemble

Let us use a bar to design quantities divided by the number of particles: e.g. ; and taking into account the definition:

Again, let us suppose that we have a phase coexistence at a point given by and that we want to modify slightly the conditions. In order to keep the system at the coexistence conditions:

Therefore, to keep the system on the coexistence conditions, the changes in the variables are constrained to fulfill:

where for any property we can define: (i.e. the difference between the values of the property in the phases). Taking a path with, for instance constant , the coexistence line will follow the trajectory produced by the solution of the differential equation:

(Eq. 1)

The Gibbs-Duhem integration technique, for this example, will be a numerical procedure covering the following tasks:

  • Computer simulation (for instance using Metropolis Monte Carlo in the NpT ensemble) runs to estimate the values of for both

phases at given values of .

  • A procedure to solve numerically the differential equation (Eq.1)

Peculiarities of the method (Warnings)

  • The integrand of the differential equation is computed with some numerical uncertainty
  • Care must be taken to reduce (and estimate) possible departures from the correct coexistence lines

References

Related reading