Gaussian overlap model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Added a recent publication)
m (Added a recent publication)
Line 21: Line 21:
*[http://dx.doi.org/10.1063/1.3559678 Peter Mausbach and Richard J. Sadus "Thermodynamic properties in the molecular dynamics ensemble applied to the Gaussian core model fluid", Journal of Chemical Physics '''134''' 114515 (2011)]  
*[http://dx.doi.org/10.1063/1.3559678 Peter Mausbach and Richard J. Sadus "Thermodynamic properties in the molecular dynamics ensemble applied to the Gaussian core model fluid", Journal of Chemical Physics '''134''' 114515 (2011)]  
*[http://dx.doi.org/10.1063/1.3609277 Atsushi Ikeda and Kunimasa Miyazaki "Thermodynamic and structural properties of the high density Gaussian core model", Journal of Chemical Physics '''135''' 024901 (2011)]
*[http://dx.doi.org/10.1063/1.3609277 Atsushi Ikeda and Kunimasa Miyazaki "Thermodynamic and structural properties of the high density Gaussian core model", Journal of Chemical Physics '''135''' 024901 (2011)]
*[http://dx.doi.org/10.1063/1.3615949 Atsushi Ikeda and Kunimasa Miyazaki "Slow dynamics of the high density Gaussian core model", Journal of Chemical Physics '''135''' 054901 (2011)]


[[Category: Models]]
[[Category: Models]]

Revision as of 11:10, 2 August 2011

The Gaussian overlap model was developed by Bruce J. Berne and Philip Pechukas [1]and is given by Eq. 3 in the aforementioned reference:

where , is the intermolecular pair potential, and are angle dependent strength and range parameters, and is a unit vector. Not long after the introduction of the Gaussian overlap model Stillinger [2] proposed a stripped-down version of the model, known as the Gaussian core model. Note that as this potential becomes the penetrable sphere model.

Equation of state

Main article: Equations of state for the Gaussian overlap model

Virial coefficients

Main article: Gaussian overlap model: virial coefficients

Phase diagram

The phase diagram of the Gaussian-core model has been calculated by Prestipino et al.[3] while the solid-liquid phase equilibria has been calculated by Mausbach et al [4] using the GWTS algorithm.

Shear viscosity

[5]

References

Related reading