Difference between revisions of "Duh Haymet"

From SklogWiki
Jump to: navigation, search
m (New page: The '''Duh-Haymet''' (Ref. 1) (1995) Padé (3/2) approximation for the Bridge function for the Lennard Jones system is (Eq. 13) <math>B(\gamma^{*})= - \frac{1}{2} \gamma^{*2} \left...)
 
m
Line 2: Line 2:
  
  
<math>B(\gamma^{*})= - \frac{1}{2} \gamma^{*2} \left[ \frac{1}{ \left[ 1+ \left( \frac{5\gamma^{*} +11}{7\gamma^{*} +9} \right) \gamma^{*}  \right]} \right]</math>
+
:<math>B(\gamma^{*})= - \frac{1}{2} \gamma^{*2} \left[ \frac{1}{ \left[ 1+ \left( \frac{5\gamma^{*} +11}{7\gamma^{*} +9} \right) \gamma^{*}  \right]} \right]</math>
  
 
where (Eq. 10) <math>\gamma^{*}(r) = \gamma (r)  - \beta \Phi_p(r)</math> where <math>\Phi_p (r)</math>  is the perturbative part of the pair potential
 
where (Eq. 10) <math>\gamma^{*}(r) = \gamma (r)  - \beta \Phi_p(r)</math> where <math>\Phi_p (r)</math>  is the perturbative part of the pair potential

Revision as of 13:20, 23 February 2007

The Duh-Haymet (Ref. 1) (1995) Padé (3/2) approximation for the Bridge function for the Lennard Jones system is (Eq. 13)


B(\gamma^{*})= - \frac{1}{2} \gamma^{*2} \left[ \frac{1}{ \left[ 1+ \left( \frac{5\gamma^{*} +11}{7\gamma^{*} +9} \right) \gamma^{*}  \right]} \right]

where (Eq. 10) \gamma^{*}(r) = \gamma (r)  - \beta \Phi_p(r) where \Phi_p (r) is the perturbative part of the pair potential (Note: in the WCA separation for the Lennard Jones system, the `perturbative part' is the attractive part).

References

  1. [JCP_1995_103_02625]