Compressibility equation: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(New page: The '''compressibility equation''' (<math>\chi</math>) can be derived from the density fluctuations of the grand canonical ensemble (Eq. 3.16 \cite{RPP_1965_28_0169}). For a homogene...)
 
No edit summary
Line 5: Line 5:
:<math> kT \left.\frac{\partial \rho }{\partial P}\right\vert_{T} = 1+ \rho \int h(r) ~{\rm d}r = 1+\rho \int [{\rm g}^{(2)}(r) -1 ] {\rm d}r= \frac{ \langle N^2  \rangle - \langle N\rangle^2}{\langle N\rangle}=\rho  k_B T  \chi_T</math>
:<math> kT \left.\frac{\partial \rho }{\partial P}\right\vert_{T} = 1+ \rho \int h(r) ~{\rm d}r = 1+\rho \int [{\rm g}^{(2)}(r) -1 ] {\rm d}r= \frac{ \langle N^2  \rangle - \langle N\rangle^2}{\langle N\rangle}=\rho  k_B T  \chi_T</math>


where <math>{\rm g}^{(2)}(r)</math> is the [[par distribution function]].
where <math>{\rm g}^{(2)}(r)</math> is the [[pair distribution function]].
For a spherical potential
For a spherical potential


Line 11: Line 11:
\equiv \frac{1}{1+\rho \hat{h}(0)} \equiv \frac{1}{ 1 + \rho \int_0^{\infty} h(r) ~4 \pi r^2 ~{\rm d}r}</math>
\equiv \frac{1}{1+\rho \hat{h}(0)} \equiv \frac{1}{ 1 + \rho \int_0^{\infty} h(r) ~4 \pi r^2 ~{\rm d}r}</math>


Note that the compressibility  equation, unlike the [[energy equatiomn | energy]] and [[pressure equation]]s,
Note that the compressibility  equation, unlike the [[energy equation | energy]] and [[pressure equation]]s,
is valid even when the inter-particle forces are not pairwise additive.
is valid even when the inter-particle forces are not pairwise additive.
==References==
==References==

Revision as of 15:21, 22 May 2007

The compressibility equation () can be derived from the density fluctuations of the grand canonical ensemble (Eq. 3.16 \cite{RPP_1965_28_0169}). For a homogeneous system:


where is the pair distribution function. For a spherical potential

Note that the compressibility equation, unlike the energy and pressure equations, is valid even when the inter-particle forces are not pairwise additive.

References