Compressibility equation: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(New page: The '''compressibility equation''' (<math>\chi</math>) can be derived from the density fluctuations of the grand canonical ensemble (Eq. 3.16 \cite{RPP_1965_28_0169}). For a homogene...)
 
mNo edit summary
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
The '''compressibility equation''' (<math>\chi</math>)  can be derived from the density fluctuations of the [[grand canonical ensemble]] (Eq. 3.16 \cite{RPP_1965_28_0169}).
The '''compressibility equation''' (<math>\chi</math>)  can be derived from the density fluctuations of the [[grand canonical ensemble]] (Eq. 3.16 in Ref. 1). For a homogeneous system:
For a homogeneous system:




:<math> kT \left.\frac{\partial \rho }{\partial P}\right\vert_{T} = 1+ \rho \int h(r) ~{\rm d}r = 1+\rho \int [{\rm g}^{(2)}(r) -1 ] {\rm d}r= \frac{ \langle N^2  \rangle - \langle N\rangle^2}{\langle N\rangle}=\rho  k_B T  \chi_T</math>
:<math>k_B T \left.\frac{\partial \rho }{\partial p}\right\vert_{T} = 1+ \rho \int h(r) ~{\rm d}{\mathbf r} = 1+\rho \int [{\rm g}^{(2)}({\mathbf r}) -1 ] {\rm d}{\mathbf r}
= \frac{ \langle N^2  \rangle - \langle N\rangle^2}{\langle N\rangle}=\rho  k_B T  \chi_T</math>
 
where <math>p</math> is the [[pressure]], <math>T</math> is the [[temperature]], <math>h</math> is the [[total correlation function]], <math>{\rm g}^{(2)}(r)</math> is the [[pair distribution function]] and <math>k_B</math> is the [[Boltzmann constant]].


where <math>{\rm g}^{(2)}(r)</math> is the [[par distribution function]].
For a spherical potential
For a spherical potential


:<math>\frac{1}{kT} \left.\frac{\partial P}{\partial \rho}\right\vert_{T} = 1 - \rho \int_0^{\infty} c(r) ~4 \pi r^2 ~{\rm d}r \equiv  1- \rho \hat{c}(0)
:<math>\frac{1}{k_BT} \left.\frac{\partial p}{\partial \rho}\right\vert_{T} = 1 - \rho \int_0^{\infty} c(r) ~4 \pi r^2 ~{\rm d}r \equiv  1- \rho \hat{c}(0)
\equiv \frac{1}{1+\rho \hat{h}(0)} \equiv \frac{1}{ 1 + \rho \int_0^{\infty} h(r) ~4 \pi r^2 ~{\rm d}r}</math>
\equiv \frac{1}{1+\rho \hat{h}(0)} \equiv \frac{1}{ 1 + \rho \int_0^{\infty} h(r) ~4 \pi r^2 ~{\rm d}r}</math>


Note that the compressibility  equation, unlike the [[energy equatiomn | energy]] and [[pressure equation]]s,
Note that the compressibility  equation, unlike the [[energy equation | energy]] and [[pressure equation]]s,
is valid even when the inter-particle forces are not pairwise additive.
is valid even when the inter-particle forces are not pairwise additive.
==References==
==References==
#[http://dx.doi.org/10.1088/0034-4885/28/1/306 J. S. Rowlinson "The equation of state of dense systems", Reports on Progress in Physics '''28''' pp. 169-199  (1965)]
[[category: statistical mechanics]]

Latest revision as of 19:24, 14 February 2008

The compressibility equation () can be derived from the density fluctuations of the grand canonical ensemble (Eq. 3.16 in Ref. 1). For a homogeneous system:


where is the pressure, is the temperature, is the total correlation function, is the pair distribution function and is the Boltzmann constant.

For a spherical potential

Note that the compressibility equation, unlike the energy and pressure equations, is valid even when the inter-particle forces are not pairwise additive.

References[edit]

  1. J. S. Rowlinson "The equation of state of dense systems", Reports on Progress in Physics 28 pp. 169-199 (1965)