Carbon dioxide: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎References: Added a recent publication)
(Added some information regarding the Murthy, Singer and McDonald models)
Line 8: Line 8:
====GCPCDO====
====GCPCDO====
Gaussian charge polarizable carbon dioxide (GCPCDO) model <ref>[http://dx.doi.org/10.1063/1.3519022 Rasmus A. X. Persson "Gaussian charge polarizable interaction potential for carbon dioxide", Journal of Chemical Physics '''134''' 034312 (2011)]</ref>.
Gaussian charge polarizable carbon dioxide (GCPCDO) model <ref>[http://dx.doi.org/10.1063/1.3519022 Rasmus A. X. Persson "Gaussian charge polarizable interaction potential for carbon dioxide", Journal of Chemical Physics '''134''' 034312 (2011)]</ref>.
====Murthy, Singer and McDonald====
Murthy, Singer and McDonald proposed four models <ref>[http://dx.doi.org/10.1080/00268978100102331 C. S. Murthy, K. Singer, and I. R. McDonald "Interaction site models for carbon dioxide", Molecular Physics '''44''' pp. 135-143 (1981)]</ref>, two models (A1 and A2) consisting of two [[Lennard-Jones model | 12-6 Lennard-Jones sites]] located roughly on the [[oxygen]] atoms, plus a point quadrupole located at the molecular centre of mass. Model B differed from models A1 and A2 in the use of the [[9-6 Lennard-Jones potential]], and model C was a three site model using the [[Combining rules#Lorentz-Berthelot rules| Lorentz-Berthelot combining rules]] for the C-O interactions .
====Oakley and  Wheatley====
====Oakley and  Wheatley====
The Oakley and  Wheatley (OW) model <ref>[http://dx.doi.org/10.1063/1.3059008  Mark T. Oakley and Richard J. Wheatley "Additive and nonadditive models of vapor-liquid equilibrium in CO2 from first principles", Journal of Chemical Physics '''130''' 034110 (2009)]</ref>.
The Oakley and  Wheatley (OW) model <ref>[http://dx.doi.org/10.1063/1.3059008  Mark T. Oakley and Richard J. Wheatley "Additive and nonadditive models of vapor-liquid equilibrium in CO2 from first principles", Journal of Chemical Physics '''130''' 034110 (2009)]</ref>.
Line 17: Line 19:
<references/>
<references/>
'''Related reading'''
'''Related reading'''
*[http://dx.doi.org/10.1080/00268978100102331 C. S. Murthy, K. Singer, and I. R. McDonald "Interaction site models for carbon dioxide", Molecular Physics '''44''' pp. 135-143 (1981)]
* [http://dx.doi.org/10.1080/00268979100100341  R. Eggenberger, S. Gerber, and H. Huber "The carbon dioxide dimer", Molecular Physics '''72''' pp. 433-439 (1991)]
* [http://dx.doi.org/10.1080/00268979100100341  R. Eggenberger, S. Gerber, and H. Huber "The carbon dioxide dimer", Molecular Physics '''72''' pp. 433-439 (1991)]
*[http://www.jce.divched.org/Journal/Issues/2002/Jul/abs874.html L. Glasser "Equations of state and phase diagrams",  Journal of Chemical Education '''79''' 874 (2002)]
*[http://www.jce.divched.org/Journal/Issues/2002/Jul/abs874.html L. Glasser "Equations of state and phase diagrams",  Journal of Chemical Education '''79''' 874 (2002)]

Revision as of 14:25, 23 May 2014


<jmol>

 <jmolApplet>
 <script>set spin X 10; spin on</script>
 <size>200</size>
 <color>lightgrey</color>
   <wikiPageContents>carbon_dioxide.pdb</wikiPageContents>
</jmolApplet>
</jmol>
Carbon dioxide

Carbon dioxide (CO2)

Models

BBV

The BBV (Bock, Bich and Vogel) model [1].

EPM

A series of popular models for CO2 are those of Harris and Yung [2], namely the EPM Rigid, the EPM Flexible and the EPM2 models.

GCPCDO

Gaussian charge polarizable carbon dioxide (GCPCDO) model [3].

Murthy, Singer and McDonald

Murthy, Singer and McDonald proposed four models [4], two models (A1 and A2) consisting of two 12-6 Lennard-Jones sites located roughly on the oxygen atoms, plus a point quadrupole located at the molecular centre of mass. Model B differed from models A1 and A2 in the use of the 9-6 Lennard-Jones potential, and model C was a three site model using the Lorentz-Berthelot combining rules for the C-O interactions .

Oakley and Wheatley

The Oakley and Wheatley (OW) model [5].

SAPT-s

SAPT (symmetry-adapted perturbation theory) [6].

SYM

The SYM model [7][8].

References

Related reading

External resources