1-dimensional Ising model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
(minor index change)
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
Model:
The '''1-dimensional Ising model''' is an [[Ising Models| Ising model]] that consists of  a system with <math> N </math> spins in a row. The energy of the system is given by
Consider a system with <math> N </math> spins in a row.


The energy of the system will be given by
:<math>  U = -J \sum_{i=1}^{N-1} S_{i} S_{i+1} </math>,  
 
<math>  U = -J \sum_{i=1}^{N-1} S_{i} S_{i+1} </math>,  


where each variable <math> S_j </math> can be either -1 or +1.
where each variable <math> S_j </math> can be either -1 or +1.


The partition function of the system will be:
The [[partition function]] of the system will be:


<math> Q_N = \sum_{\Omega^N }  \exp \left[ K \sum_{i=1}^{N-1} S_i S_{i+1}  \right]</math>,  
:<math> Q_N = \sum_{\Omega^N }  \exp \left[ K \sum_{i=1}^{N-1} S_i S_{i+1}  \right]</math>,  




Line 16: Line 13:
and <math> K = J/k_B T </math>
and <math> K = J/k_B T </math>


<math> Q_{N+1} = \sum_{S_1} \sum_{S_2} e^{kS_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_N} e^{K S_{N-1} S_N}\sum_{S_{N+1}} e^{K S_N S_{N+1} }
:<math> Q_{N} = \sum_{S_1} \sum_{S_2} e^{K S_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_{N-1}} e^{K S_{N-2} S_{N-1}}\sum_{S_{N}} e^{K S_{N-1} S_{N} }
</math>
</math>


Performing the sum of the possible <math> S_{N+1} </math> values we get:
Performing the sum of the possible values of <math> S_{N} </math> we get:


<math> Q_{N+1} = \sum_{S_1} \sum_{S_2} e^{kS_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_N} e^{K S_{N-1} S_N} \left[ 2 \cosh ( K S_n ) \right]
:<math> Q_{N} = \sum_{S_1} \sum_{S_2} e^{K S_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_{N-1}} e^{K S_{N-2} S_{N-1}} \left[ 2 \cosh ( K S_{N-1} ) \right]
</math>
</math>


<math> Q_{N+1} = \sum_{S_1} \sum_{S_2} e^{kS_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_N} e^{K S_{N-1} S_N} \left[ 2 \cosh ( K ) \right]
Taking into account that <math> \cosh(K) = \cosh(-K) </math>
 
:<math> Q_{N} = \sum_{S_1} \sum_{S_2} e^{K S_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_{N-1}} e^{K S_{N-2} S_{N-1}} \left[ 2 \cosh ( K ) \right]
</math>
</math>


Therefore:
Therefore:


<math> Q_{N+1} = \left( 2 \cosh K \right) Q_{N+1} </math>
:<math> Q_{N} = \left( 2 \cosh K \right) Q_{N-1} </math>


<math> Q_N = 2^{N} \left( \cosh K \right)^{N-1} \approx ( 2 \cosh K )^N </math>
:<math> Q_N = 2^{N} \left( \cosh K \right)^{N-1} \approx ( 2 \cosh K )^N </math>


The Helmholtz free energy in the thermodynamic limit will be
The [[Helmholtz energy function]] in the [[thermodynamic limit]] will be


<math> A = - N k_B T \log \left( 2 \cosh K \right) </math>
:<math> A = - N k_B T \log \left( 2 \cosh K \right) </math>
==References==
# Rodney J. Baxter  "Exactly Solved Models in Statistical Mechanics", Academic Press (1982)  ISBN 0120831821 Chapter 2 (freely available [http://tpsrv.anu.edu.au/Members/baxter/book/Exactly.pdf pdf])
[[Category: Models]]

Latest revision as of 19:05, 19 February 2009

The 1-dimensional Ising model is an Ising model that consists of a system with spins in a row. The energy of the system is given by

,

where each variable can be either -1 or +1.

The partition function of the system will be:

,


where represents the possible configuration of the N spins of the system, and

Performing the sum of the possible values of we get:

Taking into account that

Therefore:

The Helmholtz energy function in the thermodynamic limit will be

References[edit]

  1. Rodney J. Baxter "Exactly Solved Models in Statistical Mechanics", Academic Press (1982) ISBN 0120831821 Chapter 2 (freely available pdf)