Rotational relaxation
Rotational relaxation refers to the decay of certain autocorrelation magnitudes related to the orientation of molecules. If a molecule has an orientation along a unit vector , its autocorrelation will be given by
From the time decay, or relaxation, of this function, one may extract a characteristic relaxation time (either from the long-time exponential decay, or from its total integral, see autocorrelation). This magnitude, which is readily computed in a simulation is not directly accessible experimentally, however. Rather, relaxation times of the second spherical harmonic are obtained:
where is the second Legendre polynomial.
According to simple rotational diffusion theory, the relaxation time for would be given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau_1 = 1/2D_\mathrm{rot}} , and the relaxation time for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_2(t)} would be Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau_2 = 1/6D_\mathrm{rot}} . Therefore, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau_1= 3 \tau_2} . This ratio is actually lower in simulations, and closer to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2} ; the departure from a value of 3 signals rotation processes "rougher" than what is assumed in simple rotational diffusion (Ref 1).
Water
- Main article Rotational relaxation of water
Often, molecules are more complex geometrically and can not be described by a single orientation. In this case, several vectors should be considered, each with its own autocorrelation. E.g., typical choices for water molecules would be:
| symbol | explanation | experimental value, and method |
| HH | H-H axis | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau_2=2.0} ps (H-H dipolar relaxation NMR) |
| OH | O-H axis | ps (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ^{17}} O-H dipolar relaxation NMR) |
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} | dipolar axis | not measurable, but related to bulk dielectric relaxation |
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \perp} | normal to the molecule plane | not measurable |