Metropolis Monte Carlo
Metropolis Monte Carlo (MMC)
Main features
MMC Simulations can be carried out in different ensembles. For the case of one-component systems the usual ensembles are:
- Canonical ensemble (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle NVT } )
- Grand canonical ensemble (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu V T } )
In the case of mixtures, it is useful to consider the so-called:
The purpose of these techniques is to sample representative configurations of the system at the corresponding thermodynamic conditions.
The sampling techniques make use the so-called pseudo-random number generators.
MMC makes use of importance sampling techniques.
Configuration
A configuration is a microscopic realisation of the thermodynamic state of the system.
To define a configuration (denoted as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. X \right. } ) we usually require:
- The position coordinates of the particles
- Depending on the problem, other variables like volume, number of particles, etc.
The probability of a given configuration, denoted as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pi \left( X | k \right) } , depends on the parameters Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k } (e.g. temperature, pressure)
Example:
In most of the cases Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pi \left( X | k \right) } exhibits the following features:
- It is a function of many variables
- Only for a very small fraction of the configurational space the value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pi \left( X | k \right) } is not negligible
Due to these properties, MMC requires the use of Importance Sampling techniques
- To be improved.... hopefully!
Importance sampling
The importance sampling is useful to evaluate average values given by:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle A(X|k) \rangle = \int dX \Pi(X|k) A(X) }
where:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. X \right. } represents a set of many variables,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \Pi \right. } is a probability distribution function which depends on and on the constraints (parameters) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. A \right. } is an observable which depends on the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X }
Depending on the behavior of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \Pi \right. } we can use to compute Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle A(X|k) \rangle } different numerical methods:
- If is, roughly speaking, quite uniform: Monte Carlo Integration methods can be effective
- If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \Pi \right. } has significative values only for a small part of the configurational space, Importance sampling could be the appropriate technique
Sketches of the Method:
- Random walf over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. X \right. } :
From the configuration at the i-th step we build up a test configuration by modifying a bit (some of) the variable Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X }
Temperature
The temperature is usually fixed in MMC simulations, since in classical statistics the kinetic degrees of freedom (momenta) can be generally, integrated out. However, it is possible to design procedures to perform MMC simulations in the microcanonical ensemble (NVE).
Boundary Conditions
The simulation of homogeneous systems is usually carried out using periodic boundary conditions
Advanced techniques
References
- M.P. Allen and D.J. Tildesley "Computer simulation of liquids", Oxford University Press
- Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller and Edward Teller, "Equation of State Calculations by Fast Computing Machines", Journal of Chemical Physics 21 pp.1087-1092 (1953)