Wigner D-matrix

From SklogWiki
Revision as of 14:42, 17 June 2008 by Carl McBride (talk | contribs)
Jump to navigation Jump to search

The Wigner D-matrix is a square matrix, of dimension , given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D^j_{m'm}(\alpha,\beta,\gamma) := \langle jm' | \mathcal{R}(\alpha,\beta,\gamma)| jm \rangle = e^{-im'\alpha } d^j_{m'm}(\beta)e^{-i m\gamma} }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha, \; \beta, } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma\;} are Euler angles, and where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d^j_{m'm}(\beta)} , known as Wigner's reduced d-matrix, is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{lcl} d^j_{m'm}(\beta) &=& \langle jm' |e^{-i\beta j_y} | jm \rangle\\ &=& [(j+m')!(j-m')!(j+m)!(j-m)!]^{1/2} \sum_s \frac{(-1)^{m'-m+s}}{(j+m-s)!s!(m'-m+s)!(j-m'-s)!} \\ &&\times \left(\cos\frac{\beta}{2}\right)^{2j+m-m'-2s}\left(\sin\frac{\beta}{2}\right)^{m'-m+2s} \end{array} }

Relation with spherical harmonic functions

The D-matrix elements with second index equal to zero, are proportional to spherical harmonics (normalized to unity)

References

  1. E. P. Wigner, Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren, Vieweg Verlag, Braunschweig (1931).