Mean spherical approximation

From SklogWiki
Revision as of 13:08, 23 February 2007 by Carl McBride (talk | contribs)
Jump to navigation Jump to search

The Lebowitz and Percus mean spherical approximation (MSA) (1966) (Ref. 1) closure is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c(r) = -\beta \omega(r), ~~~~ r>\sigma.}

The {\bf Blum and H$\o$ye} mean spherical approximation (MSA) (1978-1980) \cite{JSP_1978_19_0317_nolotengoSpringer,JSP_1980_22_0661_nolotengoSpringer} closure is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm g}_{ij}(r) \equiv h_{ij}(r) +1=0 ~~~~~~~~ r < \sigma_{ij} = (\sigma_i + \sigma_j)/2}

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{ij}(r)= \sum_{n=1} \frac{K_{ij}^{(n)}}{r}e^{-z_nr} ~~~~~~ \sigma_{ij} < r}

where $h_{ij}(r)$ and $c_{ij}(r)$ are the total and the direct correlation functions for two spherical molecules of $i$ and $j$ species, $\sigma_i$ is the diameter of $i$ species of molecule.\\ Duh and Haymet (Eq. 9 \cite{JCP_1995_103_02625}) write the MSA approximation as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(r) = \frac{c(r) + \beta \Phi_2(r)}{1-e^{\beta \Phi_1(r)}}}

where $\Phi_1$ and $\Phi_2$ comes from the WCA division of the LJ potential.\\ By introducing the definition (Eq. 10 \cite{JCP_1995_103_02625})

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s(r) = h(r) -c(r) -\beta \Phi_2 (r)}

one can arrive at (Eq. 11 \cite{JCP_1995_103_02625})

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(r) \approx B^{\rm MSA}(s) = \ln (1+s)-s}

The Percus Yevick approximation may be recovered from the above equation by setting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_2=0} .

References

  1. [PR_1966_144_000251]