Flexible molecules
Modelling of internal degrees of freedom, usual techniques:
Bond distances
- Atoms linked by a chemical bond (stretching):
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{str} (r_{12}) = \frac{1}{2} K_{str} ( r_{12} - b_0 )^2 }
Bond Angles
Bond sequence: 1-2-3:
Bond Angle: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos \theta = \frac{ \vec{r}_{21} \cdot \vec{r}_{23} } {|\vec{r}_{21}| |\vec{r}_{23}|} }
Two typical forms are used to model the bending potential:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{bend}(\theta) = \frac{1}{2} k_{\theta} \left( \theta - \theta_0 \right)^2 }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{bend}(\cos \theta) = \frac{1}{2} k_{c} \left( \cos \theta - c_0 \right)^2 }