9-3 Lennard-Jones potential

From SklogWiki
Revision as of 11:58, 30 March 2007 by Carl McBride (talk | contribs)
Jump to navigation Jump to search

Functional form

The 9-3 Lennard-Jones potential is related to the standard Lennard-Jones potential.

It takes the form:

The minimum value of is obtained at , with

  • ,

Applications

It is commonly used to model the interaction between the particles of a fluid with a flat structureless solid wall.

Interaction between a solid and a fluid molecule

Let us consider the space divided in two regions:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x < 0 } : this region is occupied by a diffuse solid with density Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_s } composed of 12-6 Lennard-Jones atoms

with parameters Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_s } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_a }

Our aim is to compute the total interaction between this solid and a molecule located at a position Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_f > 0 } . Such an interaction can be computed using cylindrical coordinates ( I GUESS SO, at least).

The interaction will be:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{W} \left( x \right) = 8 \pi \epsilon_{sf} \rho_{s} \int_{-\infty}^{-x} {\textrm d z} \left[ \frac{ \sigma^{12}} { 10 (r^2 + z^2)^5} - \frac{\sigma^6 }{ 4 (r^2 + z^2 )^{2} }\right]^{r=0}_{r=\infty} . }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{W} \left( x \right) = 8 \pi \epsilon_{sf} \rho_{s} \int_{-\infty}^{-x} {\textrm d z} \left[ \frac{ \sigma^{12}} { 10 z^{10} } - \frac{\sigma^6 }{ 4 z^4 } \right]; }


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{W} \left( x \right) = 8 \pi \epsilon_{sf} \rho_s \left[ - \frac{ \sigma^{12}} { 90 z^{9} } + \frac{\sigma^6 }{ 12 z^3 } \right]_{z=-\infty}^{z=-x}; }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{W} \left( x \right) = \frac{4 \pi \epsilon_{sf} \rho_s \sigma^3}{3} \left[ \frac{ \sigma^{9}} { 15 x^{9} } - \frac{\sigma^3 }{ 2 x^3 } \right] }