DL POLY

From SklogWiki
Revision as of 12:23, 23 October 2013 by Carl McBride (talk | contribs) (Slight tidy.)
Jump to navigation Jump to search

DL_POLY [1] [2] is a general purpose serial and parallel molecular dynamics simulation package developed at Daresbury Laboratory by W. Smith, T.R. Forester and I.T. Todorov

Units

DL_POLY employs an interesting set of units which have molecular relevance [3].:

physical quantity symbol unit value
time Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_0 } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1\times10^{-12} } seconds (picoseconds)
length Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l_0 } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1\times10^{-10} } metres (Angstroms)
mass Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_0 } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1.66054\times10^{-27} } kilograms (amu)
charge Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0 } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1.60218\times10^{-19} } Coulombs (electron charge)
energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_0=m_0(l_0/t_0)^2 } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1.66054\times10^{-23} } Joules = 10 J molFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ^{-1}}
pressure Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_0=E_0/l_0^3 } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1.66054\times10^{7} } Pascal = 166.054 bar
Planck constant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6.35078 E_0 t_0 }
Boltzmann constant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0.83145 E_0/K }

Force field

The force field used in DL_POLY consists (or can consist) of the following components [4]:

Constraint algorithms

DL POLY can use either the SHAKE or the RATTLE algorithms as well as Q-SHAKE [5].

Versions of DL_POLY

The current version of DL_POLY is DL_POLY_4

Previos versions

DL_POLY_2

DL_POLY_2 was designed for simulations of up to 30,000 atoms and on parallel computers using up to 100 processors.

DL_POLY_3

DL_POLY_3 was designed for simulations of order 100,000 to 1,000,000 atoms running on up to 1000 processors.

  • DL_POLY_3 does not handle rigid body molecules.

Other versions

DL_MULTI

A DL_POLY package to simulate rigid molecules with multipoles [6].

Visualising DL_POLY output

The visualisation program VMD is capable of displaying the HISTORY trajectory file.

References

External links