Parallel hard cubes

From SklogWiki
Revision as of 11:52, 2 October 2012 by Carl McBride (talk | contribs) (Added a recent publication)
Jump to navigation Jump to search

Parallel hard cubes are a simple particle model used in statistical mechanics. They were introduced by B. T. Geilikman [1] in 1950. The virial equation of state (pressure as a power series in the density) was studied by Zwanzig, Temperley, Hoover, and De Rocco [2][3]. The latter two authors computed seven-term series for the models [3]. Both the sixth and seventh terms in the hard-cube series are negative, a counter-intuitive result for repulsive interactions. In 1998 E. A. Jagla [4] investigated the melting transition for both parallel and rotating cube models, finding a qualitative difference in the nature of the transition for the two models. In that same year Martinez-Raton and Cuesta described cubes and mixtures of cubes (See Mixtures [3]).

Usefulness of the Model

Parallel hard cubes have another use, beyond providing a simple model for which seven terms in the Mayers' virial series can be evaluated. In 2009 the Hoovers pointed out [5] that these models can be used as "ideal gas thermometers" capable of measuring the tensor temperature components Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{ T_{xx},T_{yy},T_{zz}\}} . Kinetic theory shows that particles colliding with a hard-cube Maxwell-Boltzmann ideal gas at temperature Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} will lose or gain energy according to whether the particle kinetic temperature exceeds Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} or not. The independence of the temperature components for the hard parallel cubes (or squares in two dimensions) allows them to serve as gedanken-experiment thermometers for all three temperature components.

Mixtures

[6] [7] [8]

References

Related reading