Maxwell speed distribution

From SklogWiki
Revision as of 11:56, 27 May 2011 by Carl McBride (talk | contribs) (Added a recent publication)
Jump to navigation Jump to search

The Maxwell velocity distribution [1] [2] [3] [4] provides probability that the speed of a molecule of mass m lies in the range v to v+dv is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(v)dv = 4 \pi v^2 dv \left( \frac{m}{2 \pi k_B T} \right)^{3/2} \exp (-mv^2/2k_B T) }

where T is the temperature and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant. The maximum of this distribution is located at

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_{\rm max} = \sqrt{\frac{2k_BT}{m}}}

The mean speed is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{v} = \frac{2}{\sqrt \pi} v_{\rm max}}

and the root-mean-square speed by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\overline{v^2}} = \sqrt \frac{3}{2} v_{\rm max}}

Derivation

References

Related reading

External resources