MW model of water
The mW model [1] of water is an atom with tetrahedrality intermediate between carbon and silicon. mW mimics the hydrogen-bonded structure of water through the introduction of a nonbond angular dependent term that encourages tetrahedral configurations. The model is given by:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E = \sum_i \sum_{j>i} \Phi_{ij}(r_{ij}) + \sum_i \sum_{j\neq i} \sum_{k>j} \Phi_{ijk}(r_{ij}, r_{ik}, \theta_{ijk}) }
where
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{ij}(r_{ij}) = A \epsilon \left[ B \left(\frac{\sigma}{r} \right)^{p}- \left( \frac{\sigma}{r}\right)^q \right] \exp \left( \frac{\sigma}{r- a\sigma} \right)}
and
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \Phi _{ijk}(r_{ij},s_{ik},\theta _{ijk})=\lambda \epsilon \left[\cos \theta -\cos \theta _{0}\right]^{2}\exp \left({\frac {\gamma \sigma }{r-a\sigma }}\right)\exp \left({\frac {\gamma \sigma }{s-a\sigma }}\right)}
where
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A = 7.049556277} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B = 0.6022245584} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p = 4} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q = 0} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma = 1.2}
References
Related reading