Normal matrices

From SklogWiki
Revision as of 11:08, 11 February 2008 by Dduque (talk | contribs) (→‎References)
Jump to navigation Jump to search

A complex square matrix A is a normal matrix if

where is the conjugate transpose of A. That is, a matrix is normal if it commutes with its conjugate transpose: .

Normal matrices are precisely those to which the spectral theorem applies: a matrix is normal if and only if it can be represented by a diagonal matrix and a unitary matrix by the formula

where

The entries of the diagonal matrix are the eigenvalues of , and the columns of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U} are the eigenvectors of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} . The matching eigenvalues in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Lambda} must be ordered as the eigenvectors are ordered as columns of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U} .

References