Second virial coefficient
The second virial coefficient is usually written as B, or . The second virial coefficient is given by
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle B_{2}(T)=-{\frac {1}{2}}\int \left(\langle \exp(-{\frac {\Phi _{12}({\mathbf {r} })}{k_{B}T}})\rangle -1\right)4\pi r^{2}dr}
where is the intermolecular pair potential. Notice that the expression within the parenthesis of the integral is the Mayer f-function.
For any hard convex body
The second virial coefficient for any hard convex body is given by the exact relation
where
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha = \frac{RS}{3V}}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} is the volume, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} , the surface area, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} the mean radius of curvature.
Hard spheres
For hard spheres one has
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{2}(T)= - \frac{1}{2} \int_0^\sigma \left(\langle 0\rangle -1 \right) 4 \pi r^2 dr }
leading to
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{2}= \frac{2\pi\sigma^3}{3}}
Note that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{2}} for the hard sphere is independent of temperature.
References
McQuarrie, 1976, eq. 12-40