Helmholtz energy function
Helmholtz energy function (Hermann Ludwig Ferdinand von Helmholtz) Definition of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} (for arbeit):
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.A\right.=U-TS}
where U is the internal energy, T is the temperature and S is the entropy. (TS) is a conjugate pair. The differential of this function is
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.dA\right.=dU-TdS-SdT}
From the second law of thermodynamics one obtains
thus one arrives at
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.dA\right.=-pdV-SdT} .
For A(T,V) one has the following total differential
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dA=\left(\frac{\partial A}{\partial T}\right)_V dT + \left(\frac{\partial A}{\partial V}\right)_T dV}
The following equation provides a link between classical thermodynamics and statistical mechanics:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.A\right.=-k_B T \ln Q_{NVT}}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant, T is the temperature, and is the canonical ensemble partition function.
Ideal gas
- Main article: Ideal gas Helmholtz energy function
Quantum correction
A quantum correction can be calculated by making use of the Wigner-Kirkwood expansion of the partition function, resulting in (Eq. 3.5 in [1]):
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{A-A_{ {\mathrm{classical}} }}{N} = \frac{\hbar^2}{24m(k_BT)^2} \langle F^2 \rangle }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle F^2 \rangle} is the mean squared force on any one atom due to all the other atoms.