Partition function

From SklogWiki
Revision as of 15:32, 24 September 2007 by Carl McBride (talk | contribs)
Jump to navigation Jump to search

The partition function of a system is given by

where H is the Hamiltonian. The symbol Z is from the German Zustandssumme meaning "sum over states". The canonical ensemble partition function of a system in contact with a thermal bath at temperature is the normalization constant of the Boltzmann distribution function, and therefore its expression is given by

,

where is the density of states with energy and the Boltzmann constant.

Helmholtz energy function

The partition function of a system is related to the Helmholtz energy function through the formula

This connection can be derived from the fact that is the entropy of a system with total energy . This is an extensive magnitude in the sense that, for large systems (i.e. in the thermodynamic limit, when the number of particles or the volume ), it is proportional to or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} . In other words, if we assume Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} large, then

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.k_B\right. \log\Omega(E)=Ns(e),}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s(e)} is the entropy per particle in the thermodynamic limit, which is a function of the energy per particle Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e=E/N} . We can therefore write

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.Z(T)\right.=N\int \exp\{N(s(e)-e/T)/k_B\}\,de.}

Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} is large, this integral can be performed through steepest descent, and we obtain

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.Z(T)\right.=N\exp\{N(s(e_0)-e_0/k_BT)\}} ,

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e_0} is the value that maximizes the argument in the exponential; in other words, the solution to

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.s'(e_0)\right.=1/T.}

This is the thermodynamic formula for the inverse temperature provided Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e_0} is the mean energy per particle of the system. On the other hand, the argument in the exponential is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{k_BT}(TS(E_0)-E_0)=-\frac{A}{k_BT}}

the thermodynamic definition of the Helmholtz energy function. Thus, when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} is large,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.A\right.=-k_BT\log Z(T).}

Connection with thermodynamics

We have the aforementioned Helmholtz energy function,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.A\right.=-k_BT\log Z(T)}

we also have the internal energy, which is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U=k_B T^{2} \left. \frac{\partial \log Z(T)}{\partial T} \right\vert_{N,V}}

and the pressure, which is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p=k_B T \left. \frac{\partial \log Z(T)}{\partial V} \right\vert_{N,T}} .

These equations provide a link between classical thermodynamics and statistical mechanics

See also