Ideal gas: Heat capacity
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_p - C_V = \left.\frac{\partial V}{\partial T}\right\vert_p \left(p + \left.\frac{\partial U}{\partial V}\right\vert_T \right) }
for an ideal gas this becomes:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.C_p -C_V \right.=R}
References
- Donald A. McQuarrie "Statistical Mechanics" (1976) Eq. 1-1
- Landau and Lifshitz Course of Theoretical Physics Volume 5 Statistical Physics 3rd Edition Part 1 Equation 42.11