Square shoulder model
The square shoulder model is given by [1]
where is the intermolecular pair potential, is the height of the shoulder, is the distance between site 1 and site 2 , σ is the hard diameter and λ > 1.
Direct correlation function
The direct correlation function [2]
Equation of State
[3].
Binary mixture
References
- ↑ J. M. Kincaid, G. Stell and E. Goldmark "Isostructural phase transitions due to core collapse. II. A three-dimensional model with a solid–solid critical point", Journal of Chemical Physics 65 pp. 2172-2179 (1976)
- ↑ I. Guillén-Escamilla, E. Schöll-Paschinger and R. Castañeda-Priego "A parametrisation of the direct correlation function for the square-shoulder fluid", Molecular Physics 108 pp. 141-150 (2010)
- ↑ Andreas Lang, Gerhard Kahl, Christos N Likos, Hartmut Löwen and Martin Watzlawek "Structure and thermodynamics of square-well and square-shoulder fluids", Journal of Physics: Condensed Matter 11 pp. 10143-10161 (1999)
- ↑ Gayatri Das, Nicoletta Gnan, Francesco Sciortino, and Emanuela Zaccarelli "Unveiling the complex glassy dynamics of square shoulder systems: Simulations and theory", Journal of Chemical Physics 138 134501 (2013)
Related reading
- A R Denton and H Löwen "Isostructural solid - solid transitions in square-shoulder systems", Journal of Physics: Condensed Matter 9 pp. L1-L5 (1997)
- Peter Bolhuis and Daan Frenkel "Isostructural solid - solid transitions in systems with a repulsive `shoulder' potential", Journal of Physics: Condensed Matter 9 pp. 381-387 (1997)
- Gernot J. Pauschenwein and Gerhard Kahl "Zero temperature phase diagram of the square-shoulder system", Journal of Chemical Physics 129 174107 (2008)
- Shiqi Zhou and J. R. Solana "Inquiry into thermodynamic behavior of hard sphere plus repulsive barrier of finite height", Journal of Chemical Physics 131 204503 (2009)
- S. B. Yuste, A. Santos and M. López de Haro "Structure of the square-shoulder fluid", Molecular Physics 109 pp. 987-995 (2011)
- S. P. Hlushak, P. A. Hlushak, and A. Trokhymchuk "An improved first-order mean spherical approximation theory for the square-shoulder fluid", Journal of Chemical Physics 138 164107 (2013)