Monte Carlo in the microcanonical ensemble: Difference between revisions
| Line 24: | Line 24: | ||
The Integral in the right hand side of Eq. 1 corresponds to the surface of a 3N-dimensional hyper-sphere of radius | The Integral in the right hand side of Eq. 1 corresponds to the surface of a 3N-dimensional hyper-sphere of radius | ||
<math> r = \left. \sqrt{ 2 m \Delta E } \right. </math> ; | <math> r = \left. \sqrt{ 2 m \Delta E } \right. </math> ; | ||
therefore: | |||
:<math> \Pi \left( X^{3N}|E \right) \propto \left[ E- U(X^{3N}) \right]^{(3N-1)/2} | :<math> \Pi \left( X^{3N}|E \right) \propto \left[ E- U(X^{3N}) \right]^{(3N-1)/2} | ||
</math> | </math>. | ||
See Ref 1 for an application of Monte Carlo simulation using this ensemble. | See Ref 1 for an application of Monte Carlo simulation using this ensemble. | ||
Revision as of 17:01, 28 February 2007
Integration of the kinetic degrees of freedom
Consider a system of identical particles, with total energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. H \right. } given by:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H = \sum_{i=1}^{3N} \frac{p_i^2}{2m} + U \left( X^{3N} \right). }
where the first term on the right hand side is the kinetic energy, whereas the second one is the potential energy (function of the position coordinates)
Now, let us consider the system in a microcanonical ensemble; Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. E \right. } be the total energy of the system (constrained in this ensemble)
The probability, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \Pi \right. } of a given position configuration , with potential energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U \left( X^{3N} \right) } can be written as:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pi \left( X^{3N}|E \right) \propto \int d P^{3N} \delta \left[ K(P^{3N}) - \Delta E \right] } ; (Eq. 1)
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. P^{3N} \right. } stands for the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3N} momenta, and
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta E = E - U\left(X^{3N}\right) }
The Integral in the right hand side of Eq. 1 corresponds to the surface of a 3N-dimensional hyper-sphere of radius Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r = \left. \sqrt{ 2 m \Delta E } \right. } ; therefore:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pi \left( X^{3N}|E \right) \propto \left[ E- U(X^{3N}) \right]^{(3N-1)/2} } .
See Ref 1 for an application of Monte Carlo simulation using this ensemble.