Structure factor: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (New page: <math>S(k)</math> for a monatomic system is defined by: <math>S(k) = 1 + \frac{4 \pi \rho}{k} \int_0^{\infty} ( g_2(r) -1 ) r \sin (kr) ~dr</math> where <math>k</math> is the scattering...)
 
mNo edit summary
Line 2: Line 2:




<math>S(k) = 1 + \frac{4 \pi \rho}{k} \int_0^{\infty} ( g_2(r) -1 ) r \sin (kr) ~dr</math>
:<math>S(k) = 1 + \frac{4 \pi \rho}{k} \int_0^{\infty} ( g_2(r) -1 ) r \sin (kr) ~dr</math>


where <math>k</math> is the scattering wave-vector modulus
where <math>k</math> is the scattering wave-vector modulus


<math>k= \frac{4 \pi }{\lambda \sin \left( \frac{\theta}{2}\right)}</math>
:<math>k= \frac{4 \pi }{\lambda \sin \left( \frac{\theta}{2}\right)}</math>




==References==
==References==
#[http://dx.doi.org/10.1088/0953-8984/6/41/006 A. Filipponi, "The radial distribution function probed by X-ray absorption spectroscopy", J. Phys.: Condens. Matter, '''6''' pp.  8415-8427 (1994)]
#[http://dx.doi.org/10.1088/0953-8984/6/41/006 A. Filipponi, "The radial distribution function probed by X-ray absorption spectroscopy", J. Phys.: Condens. Matter, '''6''' pp.  8415-8427 (1994)]

Revision as of 18:21, 26 February 2007

for a monatomic system is defined by:


where is the scattering wave-vector modulus


References

  1. A. Filipponi, "The radial distribution function probed by X-ray absorption spectroscopy", J. Phys.: Condens. Matter, 6 pp. 8415-8427 (1994)