Heat capacity: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Added to expression.)
m (Slight tidy.)
Line 1: Line 1:
From the [[first law of thermodynamics]] one has
The '''heat capacity''' is defined as the differential of [[heat]] with respect to the [[temperature]] <math>T</math>,
 
:<math>\left.\delta Q\right. = dU + pdV</math>
 
where <math>Q</math> is the [[heat]], <math>U</math> is the [[internal energy]], <math>p</math> is the [[pressure]] and <math>V</math> is the volume.
The '''heat capacity''' is given by the differential of the heat with respect to the [[temperature]],


:<math>C := \frac{\delta Q}{\partial T} = T \frac{\partial S}{\partial T}</math>
:<math>C := \frac{\delta Q}{\partial T} = T \frac{\partial S}{\partial T}</math>


where <math>S</math> is the [[entropy]].
where <math>Q</math> is [[heat]] and  <math>S</math> is the [[entropy]].
==At constant volume==
==At constant volume==
At constant volume (denoted by the subscript <math>V</math>),
From the [[first law of thermodynamics]] one has
:<math>\left.\delta Q\right. = dU + pdV</math>
thus at constant volume, denoted by the subscript <math>V</math>, then <math>dV=0</math>,
:<math>C_V := \left.\frac{\delta Q}{\partial T} \right\vert_V = \left. \frac{\partial U}{\partial T} \right\vert_V </math>
:<math>C_V := \left.\frac{\delta Q}{\partial T} \right\vert_V = \left. \frac{\partial U}{\partial T} \right\vert_V </math>
==At constant pressure==
==At constant pressure==

Revision as of 12:56, 2 December 2008

The heat capacity is defined as the differential of heat with respect to the temperature Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} ,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C := \frac{\delta Q}{\partial T} = T \frac{\partial S}{\partial T}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q} is heat and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} is the entropy.

At constant volume

From the first law of thermodynamics one has

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.\delta Q\right. = dU + pdV}

thus at constant volume, denoted by the subscript Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dV=0} ,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_V := \left.\frac{\delta Q}{\partial T} \right\vert_V = \left. \frac{\partial U}{\partial T} \right\vert_V }

At constant pressure

At constant pressure (denoted by the subscript Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} ),

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_p := \left.\frac{\delta Q}{\partial T} \right\vert_p =\left.\frac{\partial H}{\partial T} \right\vert_p= \left. \frac{\partial U}{\partial T} \right\vert_p + p \left.\frac{\partial V}{\partial T} \right\vert_p}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} is the enthalpy. The difference between the heat capacity at constant pressure and the heat capacity at constant volume is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_p -C_V = \left( p + \left. \frac{\partial U}{\partial V} \right\vert_T \right) \left. \frac{\partial V}{\partial T} \right\vert_p}

Solids: Debye theory

References