Thermodynamic integration: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(Added some equations)
m (Tidy up)
Line 1: Line 1:
'''Thermodynamic integration''' is used to calculate the difference in the [[Helmholtz energy function]], <math>A</math>, between two states.
'''Thermodynamic integration''' is used to calculate the difference in the [[Helmholtz energy function]], <math>A</math>, between two states.
The path must be ''continuous'' and ''reversible''.
The path '''must''' be ''continuous'' and ''reversible'' (Ref. 1 Eq. 3.5)
One has a  continuously variable energy function <math>U_\lambda</math> such that
<math>\lambda=0</math>,  <math>U_\lambda=U_0</math> and <math>\lambda=1</math>, <math>U_\lambda=U</math>


:<math>\Delta A = A - A_0 = \int_0^1 d\lambda \left\langle \frac{\partial U_\lambda}{\partial \lambda} \right\rangle_{\lambda}</math>
:<math>\Delta A = A(\lambda) - A(\lambda_0) = \int_{\lambda_0}^{\lambda\left\langle \frac{\partial U(\mathbf{r},\lambda)}{\partial \lambda} \right\rangle_{\lambda} ~\mathrm{d}\lambda</math>
 
where
 
:<math>\left.U_\lambda\right.=(1-\lambda)U_0 + \lambda U</math>.
==Isothermal integration==
==Isothermal integration==
Ref. 1 Eq. 5:
At constant [[temperature]] (Ref. 2 Eq. 5):


:<math>\frac{A(\rho_2,T)}{Nk_BT} = \frac{A(\rho_1,T)}{Nk_BT} + \int_{\rho_1}^{\rho_2} \frac{p(\rho)}{k_B T \rho^2} ~\mathrm{d}\rho </math>
:<math>\frac{A(\rho_2,T)}{Nk_BT} = \frac{A(\rho_1,T)}{Nk_BT} + \int_{\rho_1}^{\rho_2} \frac{p(\rho)}{k_B T \rho^2} ~\mathrm{d}\rho </math>
==Isobaric integration==
==Isobaric integration==
Ref. 1 Eq. 6:
At constant [[pressure]] (Ref. 2 Eq. 6):


:<math>\frac{G(T_2,p)}{Nk_BT_2} = \frac{G(T_1,p)}{Nk_BT_1} - \int_{T_1}^{T_2} \frac{H(T)}{Nk_BT^2} ~\mathrm{d}T </math>
:<math>\frac{G(T_2,p)}{Nk_BT_2} = \frac{G(T_1,p)}{Nk_BT_1} - \int_{T_1}^{T_2} \frac{H(T)}{Nk_BT^2} ~\mathrm{d}T </math>
Line 20: Line 14:
where <math>G</math> is the [[Gibbs energy function]] and <math>H</math> is the [[enthalpy]].
where <math>G</math> is the [[Gibbs energy function]] and <math>H</math> is the [[enthalpy]].
==Isochoric integration==
==Isochoric integration==
Ref. 1 Eq. 7:
At constant volume (Ref. 2 Eq. 7):


:<math>\frac{A(T_2,V)}{Nk_BT_2} = \frac{A(T_1,V)}{Nk_BT_1}  - \int_{T_1}^{T_2} \frac{U(T)}{Nk_BT^2} ~\mathrm{d}T </math>
:<math>\frac{A(T_2,V)}{Nk_BT_2} = \frac{A(T_1,V)}{Nk_BT_1}  - \int_{T_1}^{T_2} \frac{U(T)}{Nk_BT^2} ~\mathrm{d}T </math>
Line 28: Line 22:
*[[Gibbs-Duhem integration]]
*[[Gibbs-Duhem integration]]
==References==
==References==
#[http://dx.doi.org/10.1103/RevModPhys.48.587      J. A. Barker and D. Henderson "What is "liquid"? Understanding the states of matter ", Reviews of Modern Physics '''48''' pp. 587 - 671 (1976)]
#[http://dx.doi.org/10.1088/0953-8984/20/15/153101  C. Vega, E. Sanz, J. L. F. Abascal and E. G. Noya "Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins", Journal of Physics: Condensed Matter '''20''' 153101 (2008)] (section 4)
#[http://dx.doi.org/10.1088/0953-8984/20/15/153101  C. Vega, E. Sanz, J. L. F. Abascal and E. G. Noya "Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins", Journal of Physics: Condensed Matter '''20''' 153101 (2008)] (section 4)
[[category:classical thermodynamics]]
[[category:classical thermodynamics]]

Revision as of 11:44, 5 August 2008

Thermodynamic integration is used to calculate the difference in the Helmholtz energy function, , between two states. The path must be continuous and reversible (Ref. 1 Eq. 3.5)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta A = A(\lambda) - A(\lambda_0) = \int_{\lambda_0}^{\lambda} \left\langle \frac{\partial U(\mathbf{r},\lambda)}{\partial \lambda} \right\rangle_{\lambda} ~\mathrm{d}\lambda}

Isothermal integration

At constant temperature (Ref. 2 Eq. 5):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{A(\rho_2,T)}{Nk_BT} = \frac{A(\rho_1,T)}{Nk_BT} + \int_{\rho_1}^{\rho_2} \frac{p(\rho)}{k_B T \rho^2} ~\mathrm{d}\rho }

Isobaric integration

At constant pressure (Ref. 2 Eq. 6):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{G(T_2,p)}{Nk_BT_2} = \frac{G(T_1,p)}{Nk_BT_1} - \int_{T_1}^{T_2} \frac{H(T)}{Nk_BT^2} ~\mathrm{d}T }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G} is the Gibbs energy function and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} is the enthalpy.

Isochoric integration

At constant volume (Ref. 2 Eq. 7):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{A(T_2,V)}{Nk_BT_2} = \frac{A(T_1,V)}{Nk_BT_1} - \int_{T_1}^{T_2} \frac{U(T)}{Nk_BT^2} ~\mathrm{d}T }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U} is the internal energy.

See also

References

  1. J. A. Barker and D. Henderson "What is "liquid"? Understanding the states of matter ", Reviews of Modern Physics 48 pp. 587 - 671 (1976)
  2. C. Vega, E. Sanz, J. L. F. Abascal and E. G. Noya "Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins", Journal of Physics: Condensed Matter 20 153101 (2008) (section 4)