Ideal gas Helmholtz energy function: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
m (defined a couple of terms)
 
Line 13: Line 13:
:<math>A=Nk_BT\left(\ln \Lambda^3 \rho -1 \right)</math>
:<math>A=Nk_BT\left(\ln \Lambda^3 \rho -1 \right)</math>


where <math>\Lambda</math>is the [[de Broglie thermal wavelength]] and <math>k_B</math> is the [[Boltzmann constant]].
[[Category:Ideal gas]]
[[Category:Ideal gas]]
[[Category:Statistical mechanics]]
[[Category:Statistical mechanics]]

Latest revision as of 11:19, 4 August 2008

From equations

for the canonical ensemble partition function for an ideal gas, and

for the Helmholtz energy function, one has

using Stirling's approximation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =-k_BT\left( -N\ln N +N + N\ln N - N\ln \Lambda^3 \rho \right)}

one arrives at

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=Nk_BT\left(\ln \Lambda^3 \rho -1 \right)}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Lambda} is the de Broglie thermal wavelength and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant.