Hard sphere: virial coefficients: Difference between revisions
Carl McBride (talk | contribs) m (→References: Added a new reference.) |
Carl McBride (talk | contribs) m (tmp save) |
||
| Line 1: | Line 1: | ||
The [[virial equation of state]] of the [[hard sphere model]], in various dimensions, has long been of interest. | |||
In 3-dimensions analytical results were derived (all in 1899) for <math>B_2</math> by [[Johannes Diderik van der Waals]] (Ref. 1), <math>B_3</math> by [[Ludwig Eduard Boltzmann]] (Ref. 2), and <math>B_4</math> by [[Johannis Jacobus van Laar]] (Ref. 3). The calculation of <math>B_5</math> had to wait for the Rosenbluths (Refs. 4) in 1954. Thus far no analytical expressions for <math>B_5</math> and beyond have been derived. | |||
One has: | |||
:<math>B_2(\mathbb{R}^3)=</math> | |||
:<math>B_3(\mathbb{R}^3)=</math> | |||
:<math>B_4(\mathbb{R}^3)=</math> | |||
| Line 25: | Line 33: | ||
|} | |} | ||
This table is taken directly from Table 1 in Ref. | This table is taken directly from Table 1 in Ref. 6. | ||
==See also== | ==See also== | ||
| Line 31: | Line 39: | ||
== References == | == References == | ||
#[http://www.digitallibrary.nl/proceedings/search/detail.cfm?pubid=220&view=image&startrow=1 J. D. van der Waals "Simple deduction of the characteristic equation for substances with extended and composite molecules", Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam Proc. Sec. Sci. '''1''' pp. 138-143 (1899)] | |||
# L. Boltzmann "", Versl. Gewone Vergad. Afd. Natuurkd., K. Ned. Akad. Wet. '''7''' pp. 484 (1899) | |||
# J. J. Van Laar "", Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam Proc. Sec. Sci. '''1''' pp. 273- (1899) | |||
#[http://dx.doi.org/10.1063/1.1740207 Marshall N. Rosenbluth and Arianna W. Rosenbluth "Further Results on Monte Carlo Equations of State", Journal of Chemical Physics '''22''' pp. 881- (1954)] | |||
#[http://dx.doi.org/10.1103/PhysRevE.71.021105 Stanislav Labík, Jirí Kolafa, and Anatol Malijevský, "Virial coefficients of hard spheres and hard disks up to the ninth", Physical Review E '''71''' pp. 021105 (2005)] | #[http://dx.doi.org/10.1103/PhysRevE.71.021105 Stanislav Labík, Jirí Kolafa, and Anatol Malijevský, "Virial coefficients of hard spheres and hard disks up to the ninth", Physical Review E '''71''' pp. 021105 (2005)] | ||
#[http://dx.doi.org/10.1007/s10955-005-8080-0 Nathan Clisby and Barry M. McCoy "Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions", Journal of Statistical Physics '''122''' pp. 15-57 (2006)] | #[http://dx.doi.org/10.1007/s10955-005-8080-0 Nathan Clisby and Barry M. McCoy "Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions", Journal of Statistical Physics '''122''' pp. 15-57 (2006)] | ||
| Line 37: | Line 49: | ||
[[category:virial coefficients]] | [[category:virial coefficients]] | ||
[[category: hard sphere]] | [[category: hard sphere]] | ||
{{numeric}} | |||
Revision as of 11:28, 1 August 2008
The virial equation of state of the hard sphere model, in various dimensions, has long been of interest. In 3-dimensions analytical results were derived (all in 1899) for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_2} by Johannes Diderik van der Waals (Ref. 1), Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_3} by Ludwig Eduard Boltzmann (Ref. 2), and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_4} by Johannis Jacobus van Laar (Ref. 3). The calculation of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_5} had to wait for the Rosenbluths (Refs. 4) in 1954. Thus far no analytical expressions for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_5} and beyond have been derived.
One has:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_2(\mathbb{R}^3)=}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_3(\mathbb{R}^3)=}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_4(\mathbb{R}^3)=}
| Virial / Dimension | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_3/B_2^2} | 0.782004... | 0.625 | 0.506340... | 0.414063... | 0.340941... | 0.282227... | 0.234614... |
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_4/B_2^3} | 0.53223180... | 0.2869495... | 0.15184606... | 0.0759724807... | 0.03336314... | 0.00986494662... | -0.00255768... |
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_5/B_2^4} | 0.33355604(1) | 0.110252(1) | 0.0357041(17) | 0.0129551(13) | 0.0075231(11) | 0.0070724(10) | 0.00743092(93) |
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_6/B_2^5} | 0.1988425(42) | 0.03888198(91) | 0.0077359(16) | 0.0009815(14) | -0.0017385(13) | -0.0035121(11) | -0.0045164(11) |
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_7/B_2^6} | 0.1148728(43) | 0.01302354(91) | 0.0014303(19) | 0.0004162(19) | 0.0013066(18) | 0.0025386(16) | 0.0034149(15) |
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_8/B_2^7} | 0.0649930(34) | 0.0041832(11) | 0.0002888(18) | -0.0001120(20) | -0.0008950(30) | -0.0019937(28) | -0.0028624(26) |
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_9/B_2^8} | 0.0362193(35) | 0.0013094(13) | 0.0000441(22) | 0.0000747(26) | 0.0006673(45) | 0.0016869(41) | 0.0025969(38) |
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{10}/B_2^9} | 0.0199537(80) | 0.0004035(15) | 0.0000113(31) | -0.0000492(48) | -0.000525(16) | -0.001514(14) | -0.002511(13) |
This table is taken directly from Table 1 in Ref. 6.
See also
References
- J. D. van der Waals "Simple deduction of the characteristic equation for substances with extended and composite molecules", Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam Proc. Sec. Sci. 1 pp. 138-143 (1899)
- L. Boltzmann "", Versl. Gewone Vergad. Afd. Natuurkd., K. Ned. Akad. Wet. 7 pp. 484 (1899)
- J. J. Van Laar "", Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam Proc. Sec. Sci. 1 pp. 273- (1899)
- Marshall N. Rosenbluth and Arianna W. Rosenbluth "Further Results on Monte Carlo Equations of State", Journal of Chemical Physics 22 pp. 881- (1954)
- Stanislav Labík, Jirí Kolafa, and Anatol Malijevský, "Virial coefficients of hard spheres and hard disks up to the ninth", Physical Review E 71 pp. 021105 (2005)
- Nathan Clisby and Barry M. McCoy "Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions", Journal of Statistical Physics 122 pp. 15-57 (2006)
- Marvin Bishop, Nathan Clisby and Paula A. Whitlock "The equation of state of hard hyperspheres in nine dimensions for low to moderate densities", Journal of Chemical Physics 128 034506 (2008)
- René D. Rohrmann, Miguel Robles, Mariano López de Haro, and Andrés Santos "Virial series for fluids of hard hyperspheres in odd dimensions", Journal of Chemical Physics 129 014510 (2008)