Virial equation of state: Difference between revisions
mNo edit summary |
|||
| Line 1: | Line 1: | ||
The virial equation of state is used to describe the behavior of diluted gases. | The '''virial equation of state''' is used to describe the behavior of diluted gases. | ||
It is usually written as an expansion of the [[compressibility factor]], <math> Z </math>, in terms of either the | It is usually written as an expansion of the [[compressibility factor]], <math> Z </math>, in terms of either the | ||
density or the pressure. Such an expansion was first introduced by Kammerlingh Onnes. In the first case: | density or the pressure. Such an expansion was first introduced by Kammerlingh Onnes. In the first case: | ||
| Line 7: | Line 7: | ||
where | where | ||
* <math> p </math> is the pressure | * <math> p </math> is the [[pressure]] | ||
*<math> V </math> is the volume | *<math> V </math> is the volume | ||
*<math> N </math> is the number of molecules | *<math> N </math> is the number of molecules | ||
*<math>T</math> is the [[temperature]] | |||
*<math>k_B</math> is the [[Boltzmann constant]] | |||
*<math> \rho \equiv \frac{N}{V} </math> is the (number) density | *<math> \rho \equiv \frac{N}{V} </math> is the (number) density | ||
*<math> B_k\left( T \right) </math> is called the k-th virial coefficient | *<math> B_k\left( T \right) </math> is called the k-th virial coefficient | ||
==Virial coefficients== | ==Virial coefficients== | ||
Revision as of 13:56, 19 February 2008
The virial equation of state is used to describe the behavior of diluted gases. It is usually written as an expansion of the compressibility factor, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z } , in terms of either the density or the pressure. Such an expansion was first introduced by Kammerlingh Onnes. In the first case:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{p V}{N k_B T } = Z = 1 + \sum_{k=2}^{\infty} B_k(T) \rho^{k-1}} .
where
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p } is the pressure
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V } is the volume
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } is the number of molecules
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is the temperature
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho \equiv \frac{N}{V} } is the (number) density
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_k\left( T \right) } is called the k-th virial coefficient
Virial coefficients
The second virial coefficient represents the initial departure from ideal-gas behavior
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{2}(T)= \frac{N_A}{2V} \int .... \int (1-e^{-\Phi/k_BT}) ~d\tau_1 d\tau_2}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_A} is Avogadros number and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\tau_1} and are volume elements of two different molecules in configuration space.
One can write the third virial coefficient as
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{3}(T)= - \frac{1}{3V} \int \int \int f_{12} f_{13} f_{23} dr_1 dr_2 dr_3}
where f is the Mayer f-function (see also: Cluster integrals). See also:
Convergence
See Ref. 3.
References
- H. Kammerlingh Onnes "", Communications from the Physical Laboratory Leiden 71 (1901)
- James A Beattie and Walter H Stockmayer "Equations of state", Reports on Progress in Physics 7 pp. 195-229 (1940)
- J. L. Lebowitz and O. Penrose "Convergence of Virial Expansions", Journal of Mathematical Physics 5 pp. 841-847 (1964)