Triangular well model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (New page: {{stub-general}} The '''triangular well model''' is given by :<math> \Phi\left( r \right) = \left\{ \begin{array}{ccc} \infty & ; & r \leq \sigma \\ \frac{\epsilon (r/\sigma - \lambda)}...)
 
mNo edit summary
Line 12: Line 12:
where <math>\Phi(r)</math> is the [[intermolecular pair potential]], <math>r</math> is the distance, <math>\sigma</math> is the hard diameter, <math>\epsilon</math> is the well depth
where <math>\Phi(r)</math> is the [[intermolecular pair potential]], <math>r</math> is the distance, <math>\sigma</math> is the hard diameter, <math>\epsilon</math> is the well depth
and &lambda; &gt; 1.
and &lambda; &gt; 1.
==Equation of state==
:''Main article: [[Equations of state for the triangular well model]]''
==Critical point==
==References==
==References==
#[http://dx.doi.org/10.1139/p74-010 Damon N. Card and John Walkley "Monte Carlo and Perturbation Calculations for a Triangular Well Fluid", Canadian Journal of Physics '''52''' pp. 80-88 (1974)]
#[http://dx.doi.org/10.1139/p74-010 Damon N. Card and John Walkley "Monte Carlo and Perturbation Calculations for a Triangular Well Fluid", Canadian Journal of Physics '''52''' pp. 80-88 (1974)]
#[http://dx.doi.org/10.1080/00268970701725013 F. F. Betancourt-Cárdenas, L. A. Galicia-Luna and S. I. Sandler "Thermodynamic properties for the triangular-well fluid", Molecular Physics '''105''' pp. 2987-2998 (2007)]
#[http://dx.doi.org/10.1080/00268970701725013 F. F. Betancourt-Cárdenas, L. A. Galicia-Luna and S. I. Sandler "Thermodynamic properties for the triangular-well fluid", Molecular Physics '''105''' pp. 2987-2998 (2007)]
[[category: models]]
[[category: models]]

Revision as of 11:37, 19 February 2008

This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.

The triangular well model is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi\left( r \right) = \left\{ \begin{array}{ccc} \infty & ; & r \leq \sigma \\ \frac{\epsilon (r/\sigma - \lambda)}{(\lambda -1)} & ; &\sigma < r \leq \lambda \sigma \\ 0 & ; & r > \lambda \sigma \end{array} \right. }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi(r)} is the intermolecular pair potential, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} is the distance, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} is the hard diameter, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon} is the well depth and λ > 1.

Equation of state

Main article: Equations of state for the triangular well model

Critical point

References

  1. Damon N. Card and John Walkley "Monte Carlo and Perturbation Calculations for a Triangular Well Fluid", Canadian Journal of Physics 52 pp. 80-88 (1974)
  2. F. F. Betancourt-Cárdenas, L. A. Galicia-Luna and S. I. Sandler "Thermodynamic properties for the triangular-well fluid", Molecular Physics 105 pp. 2987-2998 (2007)