Hard ellipsoid model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
Line 47: Line 47:
*[[Hard ellipsoid equation of state]]
*[[Hard ellipsoid equation of state]]
==References==
==References==
#[http://dx.doi.org/10.1080/00268978500101971 D. Frenkel and B. M. Mulder  "The hard ellipsoid-of-revolution fluid I. Monte Carlo simulations", Molecular Physics '''55''' pp. 1171-1192 (1985)]
#[http://dx.doi.org/10.1080/02678299008047365 Michael P. Allen "Computer simulation of a biaxial liquid crystal", Liquid Crystals '''8''' pp. 499-511 (1990)]
#[http://dx.doi.org/10.1063/1.473665 Philip J. Camp and Michael P. Allen "Phase diagram of the hard biaxial ellipsoid fluid",  Journal of Chemical Physics  '''106''' pp. 6681- (1997)]
#[http://dx.doi.org/10.1016/j.fluid.2007.03.026  Carl McBride and Enrique Lomba "Hard biaxial ellipsoids revisited: Numerical results", Fluid Phase Equilibria  '''255''' pp. 37-45 (2007)]
#[http://dx.doi.org/10.1016/j.fluid.2007.03.026  Carl McBride and Enrique Lomba "Hard biaxial ellipsoids revisited: Numerical results", Fluid Phase Equilibria  '''255''' pp. 37-45 (2007)]
#[http://dx.doi.org/10.1063/1.472110    G. S. Singh and B. Kumar  "Geometry of hard ellipsoidal fluids and their virial coefficients", Journal of Chemical Physics '''105''' pp. 2429-2435 (1996)]
#[http://dx.doi.org/10.1063/1.472110    G. S. Singh and B. Kumar  "Geometry of hard ellipsoidal fluids and their virial coefficients", Journal of Chemical Physics '''105''' pp. 2429-2435 (1996)]
#[http://dx.doi.org/10.1006/aphy.2001.6166 G. S. Singh and B. Kumar "Molecular Fluids and Liquid Crystals in Convex-Body Coordinate Systems", Annals of Physics  '''294''' pp. 24-47 (2001)]
#[http://dx.doi.org/10.1006/aphy.2001.6166 G. S. Singh and B. Kumar "Molecular Fluids and Liquid Crystals in Convex-Body Coordinate Systems", Annals of Physics  '''294''' pp. 24-47 (2001)]
[[Category: Models]]
[[Category: Models]]

Revision as of 11:14, 30 January 2008

A prolate ellipsoid.

Interaction Potential

The general ellipsoid, also called a triaxial ellipsoid, is a quadratic surface which is given in Cartesian coordinates by

where , and define the lengths of the axis.

Overlap algorithm

The most widely used overlap algorithm is that of Perram and Wertheim:

Geometric properties

The mean radius of curvature is given by (Refs. 2 and 3)

and the surface area is given by

where is an elliptic integral of the first kind and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E(\varphi,k)} is an elliptic integral of the second kind, with the amplitude being

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi = \tan^{-1} (\sqrt \epsilon_c),}

and the moduli

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_1= \sqrt{\frac{\epsilon_c-\epsilon_b}{\epsilon_c}},}

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_2= \sqrt{\frac{\epsilon_b (1+\epsilon_c)}{\epsilon_c(1+\epsilon_b)}},}

where the anisotropy parameters, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_c} , are

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_b = \left( \frac{b}{a} \right)^2 -1,}

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_c = \left( \frac{c}{a} \right)^2 -1.}

The volume of the ellipsoid is given by the well known

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V = \frac{4 \pi}{3}abc.}

Mathematica notebook file for calculating the surface area and mean radius of curvature of an ellipsoid

See also

References

  1. D. Frenkel and B. M. Mulder "The hard ellipsoid-of-revolution fluid I. Monte Carlo simulations", Molecular Physics 55 pp. 1171-1192 (1985)
  2. Michael P. Allen "Computer simulation of a biaxial liquid crystal", Liquid Crystals 8 pp. 499-511 (1990)
  3. Philip J. Camp and Michael P. Allen "Phase diagram of the hard biaxial ellipsoid fluid", Journal of Chemical Physics 106 pp. 6681- (1997)
  4. Carl McBride and Enrique Lomba "Hard biaxial ellipsoids revisited: Numerical results", Fluid Phase Equilibria 255 pp. 37-45 (2007)
  5. G. S. Singh and B. Kumar "Geometry of hard ellipsoidal fluids and their virial coefficients", Journal of Chemical Physics 105 pp. 2429-2435 (1996)
  6. G. S. Singh and B. Kumar "Molecular Fluids and Liquid Crystals in Convex-Body Coordinate Systems", Annals of Physics 294 pp. 24-47 (2001)