Thermodynamic integration: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
mNo edit summary
Line 4: Line 4:
<math>\lambda=0</math>,  <math>U_\lambda=U_0</math> and <math>\lambda=1</math>, <math>U_\lambda=U</math>
<math>\lambda=0</math>,  <math>U_\lambda=U_0</math> and <math>\lambda=1</math>, <math>U_\lambda=U</math>


:<math>\Delta A = A - A_0 = \int_0^1 d\lambda  \langle\frac{\partial U_\lambda}{\partial \lambda}\rangle_{\lambda}</math>
:<math>\Delta A = A - A_0 = \int_0^1 d\lambda  \left\langle \frac{\partial U_\lambda}{\partial \lambda} \right\rangle_{\lambda}</math>


where
where


:<math>\left.U_\lambda\right.=(1-\lambda)U_0 + \lambda U</math>.
:<math>\left.U_\lambda\right.=(1-\lambda)U_0 + \lambda U</math>.
==References==
[[category:classical thermodynamics]]
[[category:classical thermodynamics]]

Revision as of 16:30, 29 January 2008

Thermodynamic integration is used to calculate the difference in the Helmholtz energy function between two states. The path must be continuous and reversible. One has a continuously variable energy function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U_\lambda} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda=0} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U_\lambda=U_0} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda=1} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U_\lambda=U}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta A = A - A_0 = \int_0^1 d\lambda \left\langle \frac{\partial U_\lambda}{\partial \lambda} \right\rangle_{\lambda}}

where

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.U_\lambda\right.=(1-\lambda)U_0 + \lambda U} .

References