Liouville's theorem: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{Stub-general}}
'''Liouville's theorem''' is an expression of the conservation of volume of [[phase space]]:
'''Liouville's theorem''' is an expression of the conservation of volume of [[phase space]]:



Revision as of 13:23, 19 November 2007

This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.

Liouville's theorem is an expression of the conservation of volume of phase space:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d\varrho}{dt}= \sum_{i=1}^{s} \left( \frac{\partial \varrho}{\partial q_i} \dot{q_i}+ \frac{\partial \varrho}{\partial p_i} \dot{p_i} \right) =0 }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varrho} is a distribution function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varrho(p,q)} , p is the generalised momenta and q are the generalised coordinates. With time a volume element can change shape, but phase points neither enter nor leave the volume.

References