Computation of phase equilibria: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
Line 40: Line 40:


== Gibbs ensemble Monte Carlo ==
== Gibbs ensemble Monte Carlo ==
This method is often considered as a 'smart' variation of the standard canonical ensemble procedure.  
This method is often considered as a 'smart' variation of the standard canonical ensemble procedure.  
The simulation is, therefore, carried out at constant volume, temperature and number of particles.
The simulation is, therefore, carried out at constant volume, temperature and number of particles.
However the whole system is divided in two non-interacting parts (each one has its own simulation
The whole system is divided into two non-interacting parts, each one has its own simulation
box with its own [[periodic boundary conditions]]).
box with its own [[periodic boundary conditions]].
The basic idea is to separate the two phases in different boxes in order to suppress any interfacial effects.
This separation of the two phases into different boxes is in order to suppress any influence due to  interfacial effects.
The two subsystems can interchange volume and particles. The rules of these interchanges are
The two subsystems can interchange volume and particles. The rules for these interchanges are
built up so as to  guarantee that the conditions of chemical and mechanical equilibrium between  
built up so as to  guarantee conditions of both chemical and mechanical equilibrium between  
the two phases.
the two phases.
If the overall conditions are of phase separation, it is expected that two phases will appear in
If the overall conditions are of phase separation, it is expected that two phases will appear in

Revision as of 11:48, 25 September 2007

Thermodynamic equilibrium implies, for two phases and :

  • Equal temperature:
  • Equal pressure:

The computation of phase equilibria using computer simulation can follow a number of different strategies.

Independent simulations for each phase at fixed in the canonical ensemble

Simulations can be carried out using either the Monte Carlo or the molecular dynamics technique. Assuming that one has some knowledge on the phase diagram of the system, one can try the following recipe:

  1. Fix a temperature and a number of particles
  2. Perform a limited number of simulations in the low density region (where the gas phase density is expected to be)
  3. Perform a limited number of simulations in the moderate to high density region (where the liquid phase should appear)
  4. In these simulations we can compute for each density (at fixed temperature) the values of the pressure and the chemical potentials (for instance using the Widom test-particle method)
A quick 'first guess' method

Using the previously obtained results the following, somewhat unsophisticated, procedure can be used to obtain a first inspection of the possible phase equilibrium:

  1. Fit the simulation results for each branch by using appropriate functional forms:
  2. Use the fits to build, for each phase, a table with three entries: , then plot for both tables as a function of and check to see if the two lines intersect.
  3. The crossing point provides (to within statistical uncertainty, the errors due to finite size effects, etc.) the coexistence conditions.
Improving the 'first guess' method

It can be useful to take into account classical thermodynamics to improve the previous analysis. This is because is is not unusual have large uncertainties in the results for the properties. The basic idea is to use thermodynamic consistency requirements to improve the analysis.

Methodology in the NpT ensemble

For temperatures well below the critical point, provided that the calculation of the chemical potential of the liquid phase using Widom test-particle method gives precise results, the following strategy can be used to obtain a 'quick' result:

  1. Perform an simulation of the liquid phase at zero pressure, i.e.
  2. Arrive at an initial estimate, for the coexistence value of the chemical potential by computing, in the liquid phase:
  3. Make a first estimate of the coexistence pressure, , by computing, either via simulation or via the virial coefficients of the gas phase, the pressure at which the gas phase fulfills:
  4. Refine the results, if required, by performing a simulation of the liquid phase at , or use estimates of (from the initial simulation) and the gas equation of state data to correct the initial estimates of pressure and chemical potential at coexistence.

Note that this method works only if the liquid phase remains metastable at zero pressure.

Van der Waals loops in the canonical ensemble

Direct simulation of the two phase system in the canonical ensemble

Gibbs ensemble Monte Carlo

This method is often considered as a 'smart' variation of the standard canonical ensemble procedure. The simulation is, therefore, carried out at constant volume, temperature and number of particles. The whole system is divided into two non-interacting parts, each one has its own simulation box with its own periodic boundary conditions. This separation of the two phases into different boxes is in order to suppress any influence due to interfacial effects. The two subsystems can interchange volume and particles. The rules for these interchanges are built up so as to guarantee conditions of both chemical and mechanical equilibrium between the two phases. If the overall conditions are of phase separation, it is expected that two phases will appear in different simulation boxes.

Mixtures

Symmetric mixtures

References