Surface tension: Difference between revisions
Carl McBride (talk | contribs) |
|||
| Line 53: | Line 53: | ||
The system-size dependence of the results of <math> \gamma </math> has to be taken into account to get accurante results for model systems. | The system-size dependence of the results of <math> \gamma </math> has to be taken into account to get accurante results for model systems. | ||
Spurious effects due to small system sizes can appear in the ''explicit | Spurious effects due to small system sizes can appear in the ''explicit interface'' methods. (See P.Orea et al. in the references). | ||
== Mixtures == | == Mixtures == | ||
Revision as of 10:42, 3 August 2007
The surface tension, , is a measure of the work required to create a surface.
Thermodynamics
In the Canonical ensemble the surface tension is formally given as:
- ;
where
- is the Helmholtz energy function
- is the number of particles
- is the volume
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T } is the temperature
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathcal A} } is the surface area
Computer Simulation
A review of the different techniques that can be used to compute the surface (interface) tension can be found in the paper by Gloor et al. (Ref. 1).
Liquid-Vapour Interfaces of one component systems
Binder procedure
Here, only an outline of the procedure is presented, more details can be found in Reference 2. For given conditions of volume and temperature, the Helmholtz energy function is computed as a function of the number of molecules, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(N;V,T)} . The calculation is usually carried out using Monte Carlo simulation using periodic boundary conditions If liquid-vapour equilibrium occurs, a plot of the chemical potential, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu \equiv (\partial A/\partial N)_{V,T} } , as a function of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } shows a loop. Using basic thermodynamic procedures (Maxwell's equal area construction) it is possible to compute the densities of the two phases; Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_v, \rho_l } at liquid-vapour equilibrium. Considering the thermodynamic limit for densities Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho } with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_v < \rho < \rho_l } the Helmholtz energy function will be:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(N) = - p_{eq} V + \mu_{eq} N + \gamma {\mathcal A}(N) }
where the quantities with the subindex "eq" are those corresponding to the fluid-phase equilibrium situation. From the previous equation one can write
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega (N) \equiv A(N) - \mu_{eq} N = - p_{eq} V + \gamma {\mathcal A}(N) } .
For appropriate values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } one can estimate the value of the surface area, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathcal A} } (See MacDowell, Ref. 3), and compute directly as:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma = \frac{ \Omega(N) + p_{eq} V } { {\mathcal A}(N) } = \frac{ \Omega(N) - \frac{1}{2}(\Omega(N_l)+\Omega(N_v)) }{{\mathcal A}(N)} }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_l } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_v } are given by: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_l = V \cdot \rho_l } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_v = V \cdot \rho_v }
Explicit interfaces
In these methods one performs a direct simulation of the two-phase system. Periodic boundary conditions are usually employed. Simulation boxes are elongated in one direction, and the interfaces are built (and expected to stay) perpendicular to such a direction. Taking into account the canonical ensemble definition (see above), one computes the change in the Helmholtz energy function when a small (differential) change of the surface area is performed at constant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V, T, } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } . The explicit equations can be written in terms of the diagonal components of the pressure tensor of the system. Mechanical arguments can also be invoked to arrive at equivalent conclusions (see Ref 1 for a detailed discussion on these issues)
System-size analysis
The system-size dependence of the results of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma } has to be taken into account to get accurante results for model systems. Spurious effects due to small system sizes can appear in the explicit interface methods. (See P.Orea et al. in the references).
Mixtures
References
- Guy J. Gloor, George Jackson, Felipe J. Blas and Enrique de Miguel "Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials", Journal of Chemical Physics 123 134703 (2005)
- K. Binder "Monte Carlo calculation of the surface tension for two- and three-dimensional lattice-gas models", Physical Review A 25 pp. 1699 - 1709 (1982)
- L. G. MacDowell, V. K. Shen, and J. R. Errington "Nucleation and cavitation of spherical, cylindrical, and slablike droplets and bubbles in small systems", Journal of Chemical Physics 125 034705 (2006)