Surface tension: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
Line 41: Line 41:


==References==
==References==
#[http://dx.doi.org/ G. J. Gloor, G. Jackson, F. J. Blas, and E. de Miguel "Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials", Journal of Chemical Physics '''123''' 134703 (2005)]
#[http://dx.doi.org/10.1103/PhysRevA.25.1699 K. Binder "Monte Carlo calculation of the surface tension for two- and three-dimensional lattice-gas models", Physical Review A '''25''' pp. 1699 - 1709 (1982)]
#[http://dx.doi.org/10.1103/PhysRevA.25.1699 K. Binder "Monte Carlo calculation of the surface tension for two- and three-dimensional lattice-gas models", Physical Review A '''25''' pp. 1699 - 1709 (1982)]
[[category]]
[[category]]

Revision as of 11:20, 1 August 2007

The surface tension, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma } , is a measure of the work required to create a surface.

Thermodynamics

In the Canonical ensemble the surface tension is formally given as:

;

where

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } is the number of particles
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V } is the volume
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T } is the temperature
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathcal A} } is the surface area
  • is the Helmholtz energy function

Computer Simulation

A review on different techniques to compute surface (interface) tension can be found in the paper by Gloor et al.

Liquid-Vapour Interfaces of one component systems

Binder procedure

For given conditions of volume and temperature, the Helmholtz energy function is computed as a function of the number of molecules:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(N;V,T) }

The calculation is usually carried out using Monte Carlo simulation

If liquid-vapour equilibrium occurs, the plot of the chemical potential, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu \equiv (\partial A/\partial N)_{V,T} } , as a function of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } shows a loop.

Using basic thermodynamic procedures (Maxwell construction) it is possible to compute the densities of the two phases; Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_v, \rho_l }

Explicit interfaces

Mixtures

References

  1. G. J. Gloor, G. Jackson, F. J. Blas, and E. de Miguel "Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials", Journal of Chemical Physics 123 134703 (2005)
  2. K. Binder "Monte Carlo calculation of the surface tension for two- and three-dimensional lattice-gas models", Physical Review A 25 pp. 1699 - 1709 (1982)

category