Second virial coefficient: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(New page: The '''second virial coefficient''' is usually written as ''B'', or <math>B_2</math>. The second virial coefficient is given by :<math>B_{2}(T)= - \frac{1}{2} \int \left(\langle \exp(-\fr...)
 
No edit summary
Line 1: Line 1:
The '''second virial coefficient''' is usually written as ''B'', or <math>B_2</math>.
The '''second virial coefficient''' is usually written as ''B'' or as <math>B_2</math>. The second virial coefficient represents the initial departure from [[ideal gas |ideal-gas]] behavior.
The second virial coefficient is given by
The second virial coefficient is given by


:<math>B_{2}(T)= - \frac{1}{2} \int \left(\langle \exp(-\frac{\Phi_{12}({\mathbf r})}{k_BT})\rangle -1 \right) 4 \pi r^2 dr </math>  
:<math>B_{2}(T)= - \frac{1}{2} \int \left( \left\langle \exp\left(-\frac{\Phi_{12}({\mathbf r})}{k_BT}\right)\right\rangle -1 \right) 4 \pi r^2 dr </math>  


where <math>\Phi_{12}({\mathbf r})</math> is the [[intermolecular pair potential]]. Notice that the expression within the parenthesis  
where <math>\Phi_{12}({\mathbf r})</math> is the [[intermolecular pair potential]], ''T'' is the [[temperature]] and <math>k_B</math> is the [[Boltzmann constant]]. Notice that the expression within the parenthesis  
of the integral is the [[Mayer f-function]].
of the integral is the [[Mayer f-function]].
==For any hard convex body==
==For any hard convex body==
Line 18: Line 18:
the volume, <math>S</math>, the surface area,  and <math>R</math> the mean radius of curvature.
the volume, <math>S</math>, the surface area,  and <math>R</math> the mean radius of curvature.
==Hard spheres==
==Hard spheres==
For hard spheres one has
For hard spheres one has (McQuarrie, 1976, eq. 12-40)
:<math>B_{2}(T)= - \frac{1}{2} \int_0^\sigma \left(\langle 0\rangle -1 \right) 4 \pi r^2 dr  
:<math>B_{2}(T)= - \frac{1}{2} \int_0^\sigma \left(\langle 0\rangle -1 \right) 4 \pi r^2 dr  
</math>
</math>
Line 24: Line 24:
:<math>B_{2}=  \frac{2\pi\sigma^3}{3}</math>
:<math>B_{2}=  \frac{2\pi\sigma^3}{3}</math>


Note that <math>B_{2}</math> for the [[hard sphere model| hard sphere]] is independent of temperature.
Note that <math>B_{2}</math> for the [[hard sphere model| hard sphere]] is independent of [[temperature]].
==See also==
*[[Boyle temperature]]
==References==
==References==
McQuarrie, 1976, eq. 12-40
[[Category: Virial coefficients]]
[[Category: Virial coefficients]]

Revision as of 10:11, 12 July 2007

The second virial coefficient is usually written as B or as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_2} . The second virial coefficient represents the initial departure from ideal-gas behavior. The second virial coefficient is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{2}(T)= - \frac{1}{2} \int \left( \left\langle \exp\left(-\frac{\Phi_{12}({\mathbf r})}{k_BT}\right)\right\rangle -1 \right) 4 \pi r^2 dr }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{12}({\mathbf r})} is the intermolecular pair potential, T is the temperature and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant. Notice that the expression within the parenthesis of the integral is the Mayer f-function.

For any hard convex body

The second virial coefficient for any hard convex body is given by the exact relation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{B_2}{V}=1+3 \alpha}

where

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha = \frac{RS}{3V}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} is the volume, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} , the surface area, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} the mean radius of curvature.

Hard spheres

For hard spheres one has (McQuarrie, 1976, eq. 12-40)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{2}(T)= - \frac{1}{2} \int_0^\sigma \left(\langle 0\rangle -1 \right) 4 \pi r^2 dr }

leading to

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{2}= \frac{2\pi\sigma^3}{3}}

Note that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{2}} for the hard sphere is independent of temperature.

See also

References