Partition function: Difference between revisions
Carl McBride (talk | contribs) No edit summary |
Carl McBride (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
The '''partition function''' of a system in contact with a thermal bath | The [[canonical ensemble]] '''partition function''' of a system in contact with a thermal bath | ||
at temperature <math>T</math> is the normalization constant of the [[Boltzmann distribution]] | at temperature <math>T</math> is the normalization constant of the [[Boltzmann distribution]] | ||
function, and therefore its expression is given by | function, and therefore its expression is given by | ||
| Line 6: | Line 6: | ||
where <math>\Omega(E)</math> is the [[density of states]] with energy <math>E</math> and <math>k_B</math> | where <math>\Omega(E)</math> is the [[density of states]] with energy <math>E</math> and <math>k_B</math> | ||
the [[Boltzmann constant]]. | the [[Boltzmann constant]]. The symbol ''Z'' is from the German ''Zustandssumme'' meaning "sum over states". | ||
==Helmholtz energy function== | |||
The partition function of a system is related to the [[Helmholtz energy function]] through the formula | The partition function of a system is related to the [[Helmholtz energy function]] through the formula | ||
| Line 13: | Line 14: | ||
This connection can be derived from the fact that <math>k_B\log\Omega(E)</math> is the | This connection can be derived from the fact that <math>k_B\log\Omega(E)</math> is the | ||
[[entropy]] of a system with total energy <math>E</math>. This is an [[extensive magnitude]] in the | [[entropy]] of a system with total energy <math>E</math>. This is an [[Extensive properties | extensive magnitude]] in the | ||
sense that, for large systems (i.e. in the [[thermodynamic limit]], when the number of | sense that, for large systems (i.e. in the [[thermodynamic limit]], when the number of | ||
particles <math>N\to\infty</math> | particles <math>N\to\infty</math> | ||
| Line 61: | Line 62: | ||
These equations provide a link between [[Classical thermodynamics | classical thermodynamics]] and | These equations provide a link between [[Classical thermodynamics | classical thermodynamics]] and | ||
[[Statistical mechanics | statistical mechanics]] | [[Statistical mechanics | statistical mechanics]] | ||
==See also== | |||
*[[Ideal gas partition function]] | |||
[[category:classical thermodynamics]] | [[category:classical thermodynamics]] | ||
[[category:statistical mechanics]] | [[category:statistical mechanics]] | ||
Revision as of 16:24, 26 June 2007
The canonical ensemble partition function of a system in contact with a thermal bath at temperature is the normalization constant of the Boltzmann distribution function, and therefore its expression is given by
- ,
where is the density of states with energy and the Boltzmann constant. The symbol Z is from the German Zustandssumme meaning "sum over states".
Helmholtz energy function
The partition function of a system is related to the Helmholtz energy function through the formula
This connection can be derived from the fact that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B\log\Omega(E)} is the entropy of a system with total energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E} . This is an extensive magnitude in the sense that, for large systems (i.e. in the thermodynamic limit, when the number of particles Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N\to\infty} or the volume Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V\to\infty} ), it is proportional to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} . In other words, if we assume Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} large, then
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.k_B\right. \log\Omega(E)=Ns(e),}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s(e)} is the entropy per particle in the thermodynamic limit, which is a function of the energy per particle Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e=E/N} . We can therefore write
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.Z(T)\right.=N\int \exp\{N(s(e)-e/T)/k_B\}\,de.}
Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} is large, this integral can be performed through steepest descent, and we obtain
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.Z(T)\right.=N\exp\{N(s(e_0)-e_0/k_BT)\}} ,
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e_0} is the value that maximizes the argument in the exponential; in other words, the solution to
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.s'(e_0)\right.=1/T.}
This is the thermodynamic formula for the inverse temperature provided Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e_0} is the mean energy per particle of the system. On the other hand, the argument in the exponential is
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{k_BT}(TS(E_0)-E_0)=-\frac{A}{k_BT}}
the thermodynamic definition of the Helmholtz energy function. Thus, when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} is large,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.A\right.=-k_BT\log Z(T).}
Connection with thermodynamics
We have the aforementioned Helmholtz energy function,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.A\right.=-k_BT\log Z(T)}
we also have the internal energy, which is given by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U=k_B T^{2} \left. \frac{\partial \log Z(T)}{\partial T} \right\vert_{N,V}}
and the pressure, which is given by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p=k_B T \left. \frac{\partial \log Z(T)}{\partial V} \right\vert_{N,T}} .
These equations provide a link between classical thermodynamics and statistical mechanics