1-dimensional hard rods: Difference between revisions
Carl McBride (talk | contribs) No edit summary |
mNo edit summary |
||
| Line 4: | Line 4: | ||
Consider a system of length <math> \left. L \right. </math> defined in the range <math> \left[ 0, L \right] </math>. | Consider a system of length <math> \left. L \right. </math> defined in the range <math> \left[ 0, L \right] </math>. | ||
Our aim is to compute the partition function of a system of <math> \left. N \right. </math> hard rods of length <math> \left. \sigma \right. </math>. | Our aim is to compute the [[partition function]] of a system of <math> \left. N \right. </math> hard rods of length <math> \left. \sigma \right. </math>. | ||
Model: | Model: | ||
| Line 13: | Line 13: | ||
\infty &; & {\rm elsewhere}. \end{array} \right. </math> | \infty &; & {\rm elsewhere}. \end{array} \right. </math> | ||
* | * [[Intermolecular pair potential]]: | ||
: <math> | : <math> \Phi (x_i,x_j) = \left\{ \begin{array}{lll} 0 & ; & |x_i-x_j| > \sigma \\ | ||
\infty &; & |x_i-x_j| < \sigma \end{array} \right. </math> | \infty &; & |x_i-x_j| < \sigma \end{array} \right. </math> | ||
| Line 21: | Line 21: | ||
Consider that the particles are ordered according to their label: <math> x_0 < x_1 < x_2 < \cdots < x_{N-1} </math>; | Consider that the particles are ordered according to their label: <math> x_0 < x_1 < x_2 < \cdots < x_{N-1} </math>; | ||
taking into account the pair potential we can write the canonical parttion function (configuration integral) of a system of <math> N </math> particles as: | |||
: <math> | : <math> | ||
| Line 60: | Line 59: | ||
== Equation of state == | == Equation of state == | ||
From the basic thermodynamics, the pressure [''linear tension in this case''] <math> \left. p \right. </math> can | From the basic thermodynamics, the [[pressure]] [''linear tension in this case''] <math> \left. p \right. </math> can | ||
be written as: | be written as: | ||
Revision as of 13:34, 21 June 2007
Hard Rods, 1-dimensional system with hard sphere interactions. The statistical mechanics of this system can be solved exactly (see Ref. 1).
Canonical Ensemble: Configuration Integral
Consider a system of length defined in the range .
Our aim is to compute the partition function of a system of hard rods of length .
Model:
- External Potential; the whole length of the rod must be inside the range:
where is the position of the center of the k-th rod.
Consider that the particles are ordered according to their label: ; taking into account the pair potential we can write the canonical parttion function (configuration integral) of a system of particles as:
Variable change: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \omega_k = x_k - \left(k+\frac{1}{2}\right) \sigma \right. } ; we get:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ Z \left( N,L \right)}{N!} = \int_{0}^{L-N\sigma} d \omega_0 \int_{\omega_0}^{L-N\sigma} d \omega_1 \cdots \int_{\omega_{i-1}}^{L-N\sigma} d \omega_i \cdots \int_{\omega_{N-2}}^{L-N\sigma} d \omega_{N-1}. }
Therefore:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ Z \left( N,L \right)}{N!} = \frac{ (L-N\sigma )^{N} }{N!}. }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q(N,L) = \frac{ (L-N \sigma )^N}{\Lambda^N N!}. }
Thermodynamics
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. A(N,L,T) = - k_B T \log Q \right. }
In the thermodynamic limit (i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N \rightarrow \infty; L \rightarrow \infty} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho = \frac{N}{L} } , remaining finite):
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \left( N,L,T \right) = N k_B T \left[ \log \left( \frac{ N \Lambda} { L - N \sigma }\right) - 1 \right]. }
Equation of state
From the basic thermodynamics, the pressure [linear tension in this case] Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. p \right. } can be written as:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p = - \left( \frac{ \partial A}{\partial L} \right)_{N,T} = \frac{ N k_B T}{L - N \sigma}; }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = \frac{p L}{N k_B T} = \frac{1}{ 1 - \eta}, }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta \equiv \frac{ N \sigma}{L} } ; is the fraction of volume (length) occupied by the rods.
References
- Lewi Tonks "The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres", Physical Review 50 pp. 955- (1936)
- L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, 15 pp. 951-961 (1949)
- L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, 16 pp. 137-143 (1950)