Ideal gas Helmholtz energy function: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (New page: From equations :<math>Q_{NVT}=\frac{1}{N!} \left( \frac{V}{\Lambda^{3}}\right)^N</math> and :<math>A=-k_B T \ln Q_{NVT}</math> one has :<math>A=-k_BT\left(\ln \frac{1}{N!} + N\ln\frac{V}...)
 
mNo edit summary
Line 2: Line 2:
:<math>Q_{NVT}=\frac{1}{N!} \left( \frac{V}{\Lambda^{3}}\right)^N</math>
:<math>Q_{NVT}=\frac{1}{N!} \left( \frac{V}{\Lambda^{3}}\right)^N</math>
and  
and  
:<math>A=-k_B T \ln Q_{NVT}</math>
:<math>\left.A\right.=-k_B T \ln Q_{NVT}</math>
one has
one has
:<math>A=-k_BT\left(\ln \frac{1}{N!} + N\ln\frac{V}{\Lambda^{3}}\right)</math>
:<math>A=-k_BT\left(\ln \frac{1}{N!} + N\ln\frac{V}{\Lambda^{3}}\right)</math>

Revision as of 15:20, 21 February 2007

From equations

and

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.A\right.=-k_{B}T\ln Q_{NVT}}

one has

using Stirling's approximation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =-k_BT\left( -N\ln N +N + N\ln N - N\ln \Lambda^3 \rho \right)}

one arrives at

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=Nk_BT\left(\ln \Lambda^3 \rho -1 \right)}