Ideal gas Helmholtz energy function: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) m (New page: From equations :<math>Q_{NVT}=\frac{1}{N!} \left( \frac{V}{\Lambda^{3}}\right)^N</math> and :<math>A=-k_B T \ln Q_{NVT}</math> one has :<math>A=-k_BT\left(\ln \frac{1}{N!} + N\ln\frac{V}...) |
Carl McBride (talk | contribs) mNo edit summary |
||
| Line 2: | Line 2: | ||
:<math>Q_{NVT}=\frac{1}{N!} \left( \frac{V}{\Lambda^{3}}\right)^N</math> | :<math>Q_{NVT}=\frac{1}{N!} \left( \frac{V}{\Lambda^{3}}\right)^N</math> | ||
and | and | ||
:<math>A=-k_B T \ln Q_{NVT}</math> | :<math>\left.A\right.=-k_B T \ln Q_{NVT}</math> | ||
one has | one has | ||
:<math>A=-k_BT\left(\ln \frac{1}{N!} + N\ln\frac{V}{\Lambda^{3}}\right)</math> | :<math>A=-k_BT\left(\ln \frac{1}{N!} + N\ln\frac{V}{\Lambda^{3}}\right)</math> | ||
Revision as of 15:20, 21 February 2007
From equations
and
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.A\right.=-k_{B}T\ln Q_{NVT}}
one has
using Stirling's approximation
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =-k_BT\left( -N\ln N +N + N\ln N - N\ln \Lambda^3 \rho \right)}
one arrives at
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=Nk_BT\left(\ln \Lambda^3 \rho -1 \right)}