Chemical potential: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(New page: Definition: :<math>\mu=\frac{\partial G}{\partial N}</math> where <math>G</math> is the Gibbs energy function, leading to :<math>\mu=\frac{A}{Nk_B T} + \frac{pV}{Nk_BT}</math> whe...)
 
No edit summary
Line 1: Line 1:
==Classical thermodynamics==
Definition:
Definition:


Line 10: Line 11:
is the [[Boltzmann constant]], <math>p</math> is the pressure, <math>T</math> is the temperature  and <math>V</math>
is the [[Boltzmann constant]], <math>p</math> is the pressure, <math>T</math> is the temperature  and <math>V</math>
is the volume.
is the volume.
==Statistical mechanics==
The chemical potential is the derivative of the [[Helmholtz energy function]] with respect to the
number of particles
:<math>\mu= \frac{\partial A}{\partial N}=\frac{\partial (-k_B T \ln Z_N)}{\partial N} = -\frac{3}{2} k_BT \ln \left(\frac{2\pi m k_BT}{h^2}\right) + \frac{\partial \ln Q_N}{\partial N}</math>
where <math>Z_N</math> is the [[partition function]] for a fluid of <math>N</math>
identical particles
:<math>Z_N= \left( \frac{2\pi m k_BT}{h^2} \right)^{3N/2} Q_N</math>
and <math>Q_N</math> is the [[configurational integral]]
:<math>Q_N = \frac{1}{N!} \int ... \int \exp (-U_N/k_B T) dr_1...dr_N</math>
==See also==
*[[Ideal gas chemical potential]]

Revision as of 16:21, 22 May 2007

Classical thermodynamics

Definition:

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G} is the Gibbs energy function, leading to

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu=\frac{A}{Nk_B T} + \frac{pV}{Nk_BT}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is the Helmholtz energy function, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} is the pressure, is the temperature and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} is the volume.

Statistical mechanics

The chemical potential is the derivative of the Helmholtz energy function with respect to the number of particles

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu= \frac{\partial A}{\partial N}=\frac{\partial (-k_B T \ln Z_N)}{\partial N} = -\frac{3}{2} k_BT \ln \left(\frac{2\pi m k_BT}{h^2}\right) + \frac{\partial \ln Q_N}{\partial N}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_N} is the partition function for a fluid of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} identical particles

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_N= \left( \frac{2\pi m k_BT}{h^2} \right)^{3N/2} Q_N}

and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_N} is the configurational integral

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_N = \frac{1}{N!} \int ... \int \exp (-U_N/k_B T) dr_1...dr_N}

See also