Virial equation of state: Difference between revisions
Carl McBride (talk | contribs) (New page: The virial equation of state is used to describe the behavior of diluted gases. It is usually written as an expansion of the compresiblity factor, <math> Z </math>, in terms of either...) |
Carl McBride (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
*<math> B_k\left( T \right) </math> is called the k-th virial coefficient | *<math> B_k\left( T \right) </math> is called the k-th virial coefficient | ||
==Virial coefficients== | |||
The second virial coefficient represents the initial departure from ideal-gas behavior | |||
<math>B_{2}(T)= \frac{N_0}{2V} \int .... \int (1-e^{-u/kT}) ~d\tau_1 d\tau_2 | |||
</math> | |||
where <math>N_0</math> is [[Avogadro constant | Avogadros number]] and <math>d\tau_1</math> and <math>d\tau_2</math> are volume elements of two different molecules | |||
in configuration space. The integration is to be performed over all available phase-space; that is, | |||
over the volume of the containing vessel. | |||
For the special case where the molecules posses spherical symmetry, so that <math>u</math> depends not on | |||
orientation, but only on the separation <math>r</math> of a pair of molecules, the equation can be simplified to | |||
:<math>B_{2}(T)= - \frac{1}{2} \int_0^\infty \left(\langle \exp\left(-\frac{u(r)}{k_BT}\right)\rangle -1 \right) 4 \pi r^2 dr</math> | |||
Using the [[Mayer f-function]] | |||
:<math>f_{ij}=f(r_{ij})= \exp\left(-\frac{u(r)}{k_BT}\right) -1 </math> | |||
one can write the third virial coefficient more compactly as | |||
:<math>B_{3}(T)= - \frac{1}{3V} \int \int \int f_{12} f_{13} f_{23} dr_1 dr_2 dr_3 | |||
</math> | |||
==References== | |||
#[http://dx.doi.org/10.1088/0034-4885/7/1/312 James A Beattie and Walter H Stockmayer "Equations of state",Reports on Progress in Physics '''7''' pp. 195-229 (1940)] | |||
[[category:equations of state]] | [[category:equations of state]] | ||
Revision as of 11:29, 22 May 2007
The virial equation of state is used to describe the behavior of diluted gases. It is usually written as an expansion of the compresiblity factor, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z } , in terms of either the density or the pressure. In the first case:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{p V}{N k_B T } = Z = 1 + \sum_{k=2}^{\infty} B_k(T) \rho^{k-1}} .
where
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p } is the pressure
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V } is the volume
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } is the number of molecules
- is the (number) density
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_k\left( T \right) } is called the k-th virial coefficient
Virial coefficients
The second virial coefficient represents the initial departure from ideal-gas behavior
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{2}(T)= \frac{N_0}{2V} \int .... \int (1-e^{-u/kT}) ~d\tau_1 d\tau_2 }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_0} is Avogadros number and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\tau_1} and are volume elements of two different molecules in configuration space. The integration is to be performed over all available phase-space; that is, over the volume of the containing vessel. For the special case where the molecules posses spherical symmetry, so that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} depends not on orientation, but only on the separation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} of a pair of molecules, the equation can be simplified to
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{2}(T)= - \frac{1}{2} \int_0^\infty \left(\langle \exp\left(-\frac{u(r)}{k_BT}\right)\rangle -1 \right) 4 \pi r^2 dr}
Using the Mayer f-function
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{ij}=f(r_{ij})= \exp\left(-\frac{u(r)}{k_BT}\right) -1 }
one can write the third virial coefficient more compactly as